

FTTx Network rEvolution Challenges and Solutions

Alfred Tharwat, *RCDD* Technical Support & Training Manager R&M Middle East, Turkey & Africa

Demand for Broadband and Infrastructure

Technology Infrastructure for

- The Government
- Buildings
- Transportation
- Utility Domains
- e-Health
- e-Learning
- ...

Secure communication systems, to ensures a faster economic development & growth !

New applications addressed

O

The demand for bandwidth and services ...require High-Quality-Networks

- Internet of things
 - Smart home
 - 4k/8k TV
 - TV on demand
 - Online Gaming

services

B2C

- Video conferencing
- Decentralization
- Joint CAD-development
- VPN work from home

Challenges for High Quality Networks

Permanent availability

- Constant transmission throughout the entire service life
- Maintenance with minimal effect on links in operation
- Secure Fiber Management prevents performance loss

Highest Flexibility

- Modularity ensures extension of systems
- Modular systems assure adaptation and extension
- Scalability "grow as your investment"

OPEX

- Reduction of network downtime
- Reduction of network maintenance
- Product design which supports easy Installation
- Trained persons

Network

ooline v 21205

In particular, the quality of passive components plays an important role!

2019 BICSI Middle East & Africa **District Conference & Exhibition**

High-performance fiber

networks have to meet

demands concerning

operational reliability

optic and copper

ever increasing

performance and

transmission

Copper

FO

Carriers must consider tomorrow's requirements

when planning today's broadband access networks

The Evolution of PON Technology

 \mathbf{O}

Where is the influence for layer 1

	GEPON	GPON	10G EPON	XG PON	NG
Data Rate DS / US [Gbps]	1 / 1	2.5 / 1.2	10 / 10	10 / 2.5	4(
Power Budget [dB]	26	30	30.5	35	~ 4
Laser Power US (ONU) / DS (OLT) [mW]	0.8 / 1.6	1.6 / 2.0	2.5 / 3.2	1.6 / 28.2	~1.6
Physical Reach (typ.) [km]	20	20	20	40	4(
Split Ratio	≥ 1:16 Max: 1:32	≥ 1:32 Max: 1: 64	≥ 1:32 Max: n.a.	≥ 1:64 Max: 1:256	Must s leas
Multiplexing Method	TDM	TDM	TDM	TDM	T∖ (4 wa pairs
Standard	IEEE 802.ah	IEEE 802.ah	IEEE 802.3av	ITU-T G.987	ITU-

2019 BICSI Middle East & Africa **District Conference & Exhibition**

ГG.989*

WDM* avelength $\{\lambda_{\text{US},}\lambda_{\text{DS}}\})$

support at : 1:256*

/ 60*

/~10**

10 dB**

/ 10*

PON2

Reason for new Connector Standardsgrowth of Bandwidth

IL 0.2 dB corresponds to 4.5 % loss of Light

New Standards IEC 61755 & IEC 61753

IEC 61755

- Grade A = Singlemode (high
- Grade B = Singlemode (adv
- Grade C = Singlemode (star
- Grade D = Singlemode (economic performance)
- Grade M = Multimode
- Grade 1 4 = RL Values

IEC 61753

Environmental conditions

2019 BICSI Middle East & Africa District Conference & Exhibition

New Standard IEC 61755-1 **Optical Interfaces**

Table 2 - Single mode attenuation grades at 1 310 nm and 1 550 nm (dB)

Attenuation grade	Attenuation (≥ 97%)ª	Mean	Notes
A	≤ 0.15	≤ 0.07	Reserved for future application
в	≤ 0,25	≤ 0,12	
С	≤ 0.50	≤ 0,25	
D	≤ 1,0	≤ 0,50	
The probability of a rando be ≥ 97 %. This performa eccentricity and tilt angle)	m mated connector set of mee nce is reached considering a s and using a nominal value for	ting or exceeding the sp tatistical distribution of wavelength.	connector's parameters (MFD

Table 3 – Single mode return loss grades at 1 310 nm and 1 550 nm (dB)

Return loss grade	Return loss (mated)	Notes
1	≥ 60	≥55 dB in unmated conditi (APC only)
2	≥ 45	
3	2 35	
4	≥ 26	

original chart out of IEC standardization

The key factors of low loss connectors

The right combination of fiber and ferrule

The polishing process and the material

Tuning

Interferometer & visual control

Cleaning & measurement

125um / + 0.001

Your advantage:

- 100% quality ensurance
- Longterm reliable connectivity

...but important is the connection system connector + adapter

Performance influence of the adapters

- \rightarrow geometry of the adapter, standard compliance is not enough!
- sleeve-quality and cleanness!
- Measurement, device, method, cable and cleanness

Why new Connector Standards? Low Loss System extends Reach !

BPON ONU to OI	LT (1310nm), 25dB optical j	oower budget – ITU Class B Optics – 155Mbps
Standard FTTP Cabling System		
4 typical SC	2.40dB	
connections		
6 fusion splices	0.44dB	
1x32 typical splitter	18.3dB	
Maintenance margin	1.0dB	
Remaining optical	2.86dB	
budget		
Typical fiber cable	0.40dB/km	
attenuation		
Maximum expected	7.15km	
effective reach		

PON Equipment

Central Office Equipment

- Optical Line Terminal (OLT)
- Basically an Ethernet or ATM Edge Switch w/ a PON interface found at the CO, Headend or POP
- Broadcasts downstream traffic through one or more ports
- Manages "Ranging" or synchronization of same-PON ONTs

Outside Plant Equipment

- Splitters/Combiners/Couplers (Splits or combines signals into multiple branches)
- Found in controlled environments like manholes, under curbs, or in ruggedized outdoor cabinets

PON Equipment

Customer Premise Equipment

- Optical Networking Terminal (ONT) or Unit (ONU)
- Terminates PON network and converts Optical to Electrical
- Filters out frames not addressed to itself
- Converts incoming signal to specific type of CPE traffic such as T1, Ethernet, ATM
- Pass traffic on to Enterprise equipment such as Switches, Routers, PBXs, etc.
- In FTTC, the ONT is located outside of the CP and allows subscribers of other services, like DSL, to access to the PON

Summary PON

PON is the **ideal** solution for delivering Broadband services into FTTH

GPON is the ideal PON solution for FTTH

GPON over CWDM guarantees even more BW for the future

- Established standards
- Broad industry support
- WDM-PON is the "new kid on the block"

Technology & Deployment The main factors affecting the infrastructure deployment are:

- Which technology addresses better the requirement (...maybe a combination)?
- Bandwidth availability & capacity,
- Maintenance & fault isolation
- The use of existing infrastructure?

- Type of FTTH as a green or brown field
- Network architecture P2P or P2MP.
- Local labor costs, local Regulatory, ...
- Termination Point (FTTH, FTTB, ...)
- Upgradable for new Technologies

PON Standard Fundamentals

	BPON	EPON	G
Standard	ITU G.983	IEEE803.2ah	ITU-
Data Packet Cell Size	53 bytes (48 payload and 5 overload)	1,518 bytes	Variable size up to
Maximum Bandwidth	1.2 Gbit/s downstream; 622 Mbit/s upstream	Up to symmetric 1.25 Gbit/s	Downstrear from 1.2 Gbit upstream o 155 Mbit/s, 6 Gbit/s, o
Downstream Wavelength	1480nm to 1500nm	1550nm	1480nm
Upstream Wavelength	1260nm to 1360nm	1310nm	1260nm
Traffic Modes	АТМ	Ethernet	ATM, Eth
Voice	TDM	VOIP or TDM	Nativ
Video	1550nm overlay	1550nm overlay	Either as F
ODN Classes Supported	A, B, and C	A and B	A, B
Max PON Splits	32	16	

 \mathbf{O}

2019 BICSI Middle East & Africa District Conference & Exhibition

PON

T G.984

e, from 53 bytes o 1,518

m configurable t/s to 2.5 Gbit/s; configurable in 622 Mbit/s, 1.25 or 2.5 Gbit/s

to 1500nm

to 1360nm

nernet, TDM

ve TDM

RF or over IP

and C

64

Total Loss Budget Standards

Defined by the standards.

The **ITU** organization will specify the maximum loss in order to get an "error free" transmission:

	Class A	Class B	Class B +	Class C	
Minimum loss	5 dB	10 dB	13 dB	15 dB	
Maximum loss	20 dB	25 dB	28 dB	30 dB	
NOTE – The requirements of a particular class may be more stringent for one system type than for another, e.g. the class C attenuation range is inherently more stringent for TCM systems due to the use of a 1:2 splitter/combiner at each side of the ODN, each having a loss of about 3					

Table G.984.2 - Classes for optical path loss

2019 BICSI Middle East & Africa District Conference & Exhibition

International Telecommunication Union

FTTH – Network Topologies

Home Run

- P2P connections via Ethernet Switch
- Typical distance 10km (max 40km)
- Very common for MDU

Power Split

- Split Upstream (TDMA); 20km (60)
- 32 128 subscribers per PON
- Variants BPON, EPON, GPON (common for mass markets)

WDM PON

- Wavelength (color) per customer
- Under standardization
- High bandwidth per customer
- Combines advantages of P2P and P2MP

P2MP Connectivity

Deployment Topology GPON Power budget vs Splitters

In a power budget for a GPON scenario with e.g 28 dB, cannot be implemented any number of splitters. (Today: 1:32 or 1: 4 and 1: 8 recommended). All connections, cable attenuations, connectors and components have to be included in the Budged-Calculation.

Deployment Topology GPON Power budget vs Splitters

Network Topology P2P

Network Topology P2MP

The TCO advantage of P2MP

...but not as future proof as P2P

Realistic deployment

- 5000 subscribers connected to CO
- PON splitting ratio 1:32
- Fibre terminations per ODF rack: 1,440 (10 shelves holding 144 fibres)
- Power consumption figures and ports per cage based on real product specs

P2MP or P2P?

What do the customer need?

- Where is the area in question ?
- How far from central office ?
- Less maintenance ?
- More future proof ?
- Be different or same as most ?
- Space

Network topology

P2P or P2MP decision (maybe both – but in this case we have to know for each subscriber how they are going to be connected; for example if it is a residential area it can be completely P2MP, for a business park it could be P2P)

WDM PON network architecture

Each wavelength in a WDM-PON network is effectively a P2P link to the Customer, allowing each link to run a different speed and protocol for maximum flexibility and pay-as-you-grow upgrades.

NG-PON1 **FTTx Future** 10G-GPON

Promising Technologies •

•Among all technologies that could possibly allow service providers to increase the bandwith per user, two currently stand out to become the technology of choice for Next Generation Networks: NG-PON1 and NG-PON2.

NG-PON Standards

Service Providers who have already deployed FTTx, will be able to reuse the same high-quality-network (ODN) and therefore protect their current investment.

Туре	Type 10G-GPON		10G-EPON		WDM-PON		
Standard	Units	G.987		802.3av [™]		ITU-T	G.989* t
Protocol		Ethernet, T	DM, TDMA	Ethernet		T.B.C.	
Services		Voice/data - Triple-play -File exchange/remote learning/IPTV/ VOD		-Voice/data - Triple-play -File exchange/remote learning/IPTV/ VOD		Voice/data - Triple-play -File exchange/remote learning/	
Maximum physical distance (OLT to ONT)	km	Up to 20		Up to 20		40	/60 *
Split Ratio		up to 1x64		up to 1x32		1:	256
Nominal bit rate *		Downstream	Upstream	Downstream	Upstream	Downstream	Upst
Asymmetric	Gb/s	10	2,5	10	1,25	Virtually no limits	Virtually
Symmetric	Gb/s	10	10	10	10	E.g., 1 Gbit/s per user	E.g., 1 Gbi
Operating wavelength band	nm	1577 -2, +3	1270 ± 10	1577 -2, +3	1270 ± 10	(4 wavelength	pairs {λ
ORL _{MAX}	dB	≥3	32	2	20	2	<mark>≥</mark> 40

2019 BICSI Middle East & Africa **District Conference & Exhibition**

/IPTV/VOD

tream

no limits it/s per user

PON Future XG-PON1 (ITU-T G.987)

- XG-PON1 considered a short term evolution of GPON. It uses a single wavelength for the • downstream PON signal and a single wavelength for the upstream PON signal. This PON has been standardized by the ITU-T 987.x recommendation series.
- Co-existence of two different technologies over the same fiber: GPON and XG-PON1
- Downstream: 10 Gbps / Upstream: 2.5 Gbps;
- Co-existence of XG-PON1 and GPON on the same fiber infrastructure separated in wavelength domain => introduction of blocking filters at customer premises and of WDM multiplexers in CO

PON Future NG-PON2 (ITU-T G.989.x)

- NG-PON2 stacks multiple XG-PON1 systems in the wavelength domain •
- Standards: ۲
 - G.989.2 => 40-Gigabit-capable passive optical networks (NG-PON2): Physical media dependent (PMD) layer specification
 - G.989.3 => 40-Gigabit-capable passive optical networks (NG-PON2): Transmission Convergence Layer

NG-PON Technology Evolution NG-PON1 (10G)

One interesting characteristic of 10G-PON and 10G-EPON is, that the ITU and IEEE committees have defined a «coexistence mindset», allowing for concurrent operation with current PON technology. Allows a smoth upgrade using the existing ODN Network.

The Future of FTTH

Increase the bandwidth to ≥10 Gb/s DS & US, ie NG-PON2

- **NG-PON2** Requirement for coexistence with RF Overlay in GPON scenario: ٠
 - Support of RF Overlay is needed; ٠
 - Minimize impact on the RF performance; •

 \bigcirc

Upgrade to NG-PON with minimal service disruption of GPON clients; •

NG-PON Technology Evolution votechnologies stand out **NG-PON1 (10G)**

What are Next Gen PON Key Benefits

- Increased bandwidth will offer new services and will increase revenues
- Higher ports density with higher splitter ratio will offer more subscribers per central office thus reducing OPEX & CAPEX

- Increased Coverage will reduce the number of Central offices needed in rural areas thus offering OPEX & CAPEX savings
- Operators can close end remove unneccesary exchanges

(France Telecom could close 95% of its rural COs with Long Reach)

Next Gen PON Networks will Reduce TCO and Increase Revenues

What are Next Gen PON Key Benefits

Green Network

- xPON networks offers lower consumption Levels compared to VDSL and P2P technologies leading to OPEX savings
- Next Gen PON OLTs will offer additional savings based on green innovations and higher split ratio (*) 64 subscribers (**) 128 subscribers

Lower cost per Mbps

GPON XGPON1 EPON 10G-EPON Note: Cost per Mbps based on 32 connected subscribers (OLT +ONT CAPEX)

- Next Gen PON Optics costs are higher due to higher performance levels
- The cost of 10G-EPON will decrease compared to EPON
- The cost of XGPON1 will decrease compared to GPON

Next Gen PON Networks will Reduce TCO and Increase Revenues

Benefits of Unified xPON Access Platform

Reduced CAPEX

Cost efficient industrial chain :

Unified chipsets & modules for different xPON technologies

Flexible Platform:

Common Chassis & backplane for GPON / EPON /P2P/ 10GE PON / XG-PON 1/ WDM-PON cards

Next Gen PON Readiness :

Lower upgrade costs: Only 1 new module is needed for the upgrade to 10G-EPON (or XG-PON1 or WDM-PON) compared to a traditional design

Reduced OPEX

Green Technology:

Lower power consumption with newest design & innovative features

Optimized OAM :

Unified Operation & Maintenance for different **xPON** technologies

Unified xPON Platform Reduces OPEX & CAPEX stments

Conclusion Network

- Next generation PON's will enable seamless evolution, from existing optical access networks, which are mainly ٠ residential-focussed, to converged access networks supporting residential, business, cloud and mobile backhaul services.
- Large investments have been made deploying optical fiber at the access network layer. Any new technology has to use the existing passive fiber infrastructure (e.g. splitter based P2MP plant)
- In terms of bitrates, XG-PON1 technology is the natural successor to GPON, but the need for higher bitrates will ٠ lead many operators to upgrade their networks directly to NG-PON2.
- Time and wavelength division multiplexed PON (TWDM-PON) has been chosen as the technical concept for NG-PON2.

Questions...

Thank you for your attention