THE FABULOUS, FAST MOVING, FEVER PITCH, FOREVER ACCELERATING FIBER FRENZY

Rodney Casteel, RCDD, DCDC, NTS, OSP - CommScope, Chair TIA FOTC Cindy Montstream, EE, RCDD, NTS, CPLP - Legrand, Standards Chair TIA FOTC Paul Neveux, Jr., Ph.D. - Superior Essex International, LP

Tony Irujo - OFS

Darryl Heckle - Corning

Robert Reid - Panduit

COMMSCOPE°

Overview:

- Part of the Telecommunications Industry Association (<u>www.tiaonline.org</u>)Until 2013, we had been known as the Fiber Optics LAN Section (FOLS). Our new name was chosen to reflect our expanding charter.
- Formed 24 years ago
- Mission: to educate users about the benefits of deploying fiber in customer-owned networks
- FOTC provides vendor-neutral information

Current Members

- AFL
- CommScope
- Corning
- EXFO
- Fluke Networks
- General Cable
- OFS

Current Members

- Legrand
- Panduit
- Sumitomo Electric Lightwave
- Superior Essex
- The Siemon Company
- Viavi

- Maintain a website with Fiber FAQs, White Papers and other resources www.tiafotc.org.
- Developed and maintain a free Cost Model that allows users to compare installed first costs of several architectures.
- Host a webinar series throughout the year with all webinars available on demand.
- Speak at industry conferences like BICSI
- Contribute to industry publications Like BICSI News.
- Conduct market research like the surveys today

- Recent Webinars Available on Demand
 - Keeping up with High Speed Migration in the Data Center
 - Data Center Design, Planning & Upcoming Changes to TIA-942
 - Best Practices for Achieving Tier 1 Fiber Certification
- Visit <u>www.tiafotc.org</u> or our channel on BrightTalk
- Webinars are eligible for CEC credit for up to <u>two years</u> after they are first broadcast. Email <u>liz@goldsmithpr.com</u> if you have completed a webinar and want to receive your CEC.

Important Notice

Any product(s) identified or identifiable via a trade name or otherwise in this presentation as a product(s) supplied by a particular supplier(s) is provided for the convenience of users of this presentation and does not constitute an endorsement of any kind by TIA of the product(s) named. This information may be provided as an example of suitable product(s) available commercially. Equivalent product(s) may be used if they can be shown to lead to the same results.

IEEE Standards Update

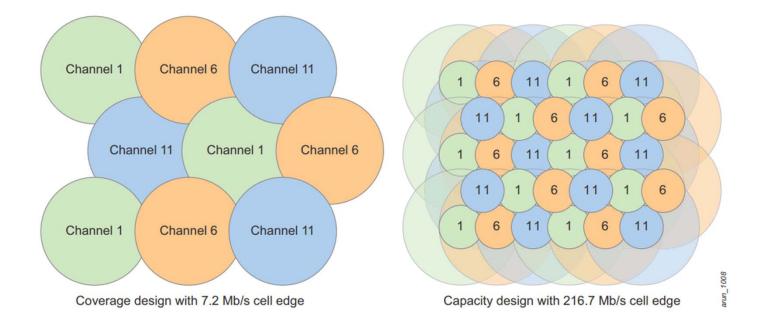
PAUL NEVEUX, Jr., Ph.D.

Director, Premises Optical Fiber / OEM Market Management Superior Essex International, LP

IEEE Copper Standards

New IEEE Twisted Pair Standards

- IEEE 802.3bz: 2.5/5 Gb Ethernet
 - At least 100 meters over CAT 6; less for Cat 5e: Alien X-talk
 - Applications include Wi-Fi and PoE++
 - Side Benefit: Currently, all desktop/laptops have 1Gb Ethernet built in will allow manufacturers to offer faster wired speeds to desktop/laptop by building in 2.5/5 G instead
- IEEE P802.3bq: 25/40 Gb Ethernet over twisted pair copper
 - Requires CAT 8 shielded twisted pair cable
 - Published June 2016



IEEE Mobile and Wireless

Current Wireless Standards

Wireless Standard	Data Rate (Mb/s)		
802.11	2		
802.11b	11		
802.11a,g	54		
802.11n	600		
802.11ac	1300		
802.11ac (Wave 2)	6900		

IEEE 802.11ac

Wireless Standards in Development

Wireless Standard	Task Group Name	Data Rate (Gb/s)	Expected Publication Date
802.11ax	High Efficiency (HE) Wireless LAN	10	December 2019
802.11ay	Enhanced Throughput for Operation in License-Exempt Bands above 45 GHz	20	November 2019
802.11az	Next Generation Positioning (NGP)	N/A	1Q 2022
802.11ba	Wake-up Radio (WUR) Operation	N/A	2Q 2018

IEEE 802.11ax: High Efficiency Wireless

Parameter	802.11ac	802.11ax
Bands	5 Hz	2.4 and 5 Ghz
Channel Bandwidth	20, 40, 80, 80+80 & 160 MHz	20, 40, 80, 80+80 & 160 MHz
FFT Size	64, 128, 256, 512	128, 256, 512, 1024 , 2048
Subcarrier Spacing	312.5 kHz	78.125 kHz
OFDM Symbol Duration	3.2 μs + 0.8/0.4 μs CP	12.8 μs + 0.8/ 1.6/3.2 μs CP
Highest Modulation	256-QAM	1024-QAM
Data Rates	433 <bps (80="" 1="" mhz,="" ss)<br="">6933 Mbps (160 MHz, 8 SS)</bps>	600.4 <bps (80="" 1="" mhz,="" ss)<br="">9607.8 Mbps (160 MHz, 8 SS)</bps>

802.11ay Wireless above 45 GHz

- Environment
 - Crowded public spaces (airports, malls, etc.)
 - Link distance up to 10 cm to 1 km with line of sight (distance affects speed)
 - Devices stationary during use; one device per WAN
- Application
 - Mass data downloads (video, pictures, etc.)
 - Jitter not critical key metric is user's transfer time: < 1 second
 - Application exits once task is complete

Fiber Required for Aggregation

- New copper and wireless applications will require larger "pipes" to backhaul information to the data center
- The new bottleneck will be from the telecom closet to the data center unless higher throughput media, like fiber, are used.
- All these new applications will require higher throughputs in the data center.

Optical Fiber Ethernet Update

IEEE Standards

10, 40 and 100 Gb Ethernet on MMF

Ethernet Speed	IEEE	Designation	Fiber Type	Number of Fibers	Maximum Link Length (m)	Maximum Channel Insertion Loss (dB)
10 Gb	802.3ae	10GBASE-SR	OM3	2	300	2.6
40 Gb	802.3ba	40GBASE-SR4	OM3	8	100	1.9
40 Gb	802.3ba	40GBASE-SR4	OM4	8	150	1.5
100 Gb	802.3ba	100GBASE-SR10	OM3	20	100	1.9
100 Gb	802.3ba	100GBASE-SR10	OM4	20	150	1.5
100 Gb	802.3bm	100GBASE-SR4	OM4	8	100	1.9

40 and 100 Gb Ethernet on SMF

Ethernet Speed	IEEE	Designation	Wave-lengths (nm)	Number of Fibers	Max. Link Length	Max. Channel Insertion Loss (dB)
40 Gb	802.3ba	40GBASE-IR4	4 λ 1260 to 1355	2	2 km	4.0
40 Gb	802.3ba	40GBASE-LR4	4 λ 1260 to 1355	2	10 km	6.7
100 Gb	802.3ba	100GBASE-LR4	4 λ 1260 to 1355	2	10 km	6.3

IEEE 802.3bs - 200/400 Gb/s Ethernet

- Implementation for MMF:
 - 16 x 25 Gb/s (32 fibers)
- Full duplex operation
- Media Distances
 - 100 m over OM4/5 MMF
 - 70 m over OM3 MMF
 - 10 km, 2 km, 500 m over SMF
- Expected Jan 2018 Publication

 Tx
 <td

IEEE 802.3cd -50 Gb/s (Single Lane), NG 100/200 Gb/s Ethernet

- 50 Gb/s Ethernet PHYs
 - MMF with lengths up to at least 100 m (OM4/5; 50GBASE-SR)
 - SMF with lengths up to at least 2 km and lengths up to at least 10 km
- 100 Gb/s Ethernet PHYs
 - MMF with lengths up to at least 100 m (OM4/5; 100GBASE-SR2)
 - Duplex SMF with lengths up to at least 500 m
- 200 Gb/s Ethernet PHYs
 - MMF with lengths up to at least 100 m (OM4/5; 200GBASE-SR4)

New IEEE Study Group

- 200/400G Ethernet over OM3/4/5 Fiber
- 4 Wavelengths over at least 100 meters using OM5 Fiber
- Reach for OM3/4 to be determined
- Actual objectives still to be determined

IEEE P802.3ca 100G-EPON Task Force

- Support subscriber access networks using point to multipoint topologies on optical fiber
- Provide specifications for physical layers operating over a single SMF strand and supporting symmetric and/or asymmetric MAC data rates of:
 - 25 Gb/s in downstream and less than or equal to 25 Gb/s in upstream
 - 50 Gb/s in downstream and less than or equal to 50 Gb/s in upstream
 - 100 Gb/s in downstream and less than or equal to 100 Gb/s in upstream
- Support coexistence with 10G-EPON
- Optical power budgets to accommodate channel insertion losses equivalent to those supported by the 10G-EPON standard
- Wavelength allocation allowing concurrent operation with 10G-EPON PHYs
- Wavelength allocation allowing concurrent operation of 25G-EPON and G-PON reduced wavelength set (1290nm-1330nm) PHYs

IEEE P802.3cc 25 Gb/s Ethernet over SMF

- Provide physical layer specification which support 25 Gb/s operation over at least 10 km on (duplex) SMF.
- Provide physical layer specification which support 25 Gb/s operation over at least 40 km on (duplex) SMF.
- Provide appropriate support for OTN
- Target market is campus, WAN, and MANs
- Approved as a standard on December 6, 2017

TIA Standards Update

Cindy Montstream, EE, RCDD/NTS, CPLP

Director of Technology Support & Training Data Communications Division, Legrand

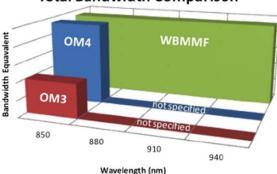
Chair, TIA TR-42.3 FOTC Standards Chair

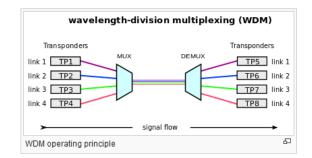
TIA Standards Update

TR-42 | TELECOMMUNICATIONS CABLING SYSTEMS

- Develops standards for telecommunications cabling infrastructure
- Standards are grouped into 3 categories: Common, Premises and Cabling & Components
- Standards cover many different premises, i.e. data center, commercial building, residential, healthcare facility, education facility, etc.

New Media Types & Connector

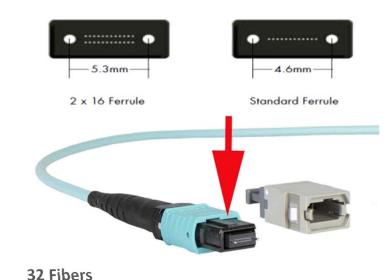




OM5: Wide Band Multimode Fiber

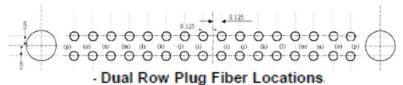
ANSI/TIA-492AAAE Wide Band Multimode (WBMMF)

- 50µ Laser Optimized Multimode Fiber
 Use cost effective MM VCSEL technology
- Optimized to support at least 4 wavelengths
- OM5 designation
- Backwards compatible
 - Continue to support legacy 850nm OM4 applications
- No additional field testing required
- Field polished the same way as any other MMF
- Published 06/2016



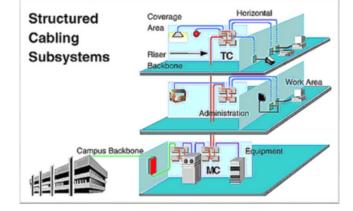
2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8

Total Bandwidth Comparison


ANSI/TIA-604-18 (FOCIS 18)

- 1x16 and 2x16 Multifiber Push-On connector
 - Has offset key
- 1x16 is similar to 12-fiber MPO & 2x16 similar to 24-fiber MPO (FOCIS 5)
 - Requires new FOCIS document because connector requires different distance between guide holes
- Supports 1st generation of 400 GbE over MMF

16 Fibers


Single Row Plug Fiber Locations,

Standards Integrating New Media Types

- ANSI/TIA-568.0-D Addendum 1 (Generic Telecommunication Cabling)
 - Recognized fiber now stated as --multimode optical fiber cabling (ANSI/TIA-568.3-D) 2-fiber (or higher fiber count); (updated reference & recommendation of OM3 or higher
 - OM5 added to application MM fiber table
- ANSI/TIA-568.1-D Addendum 1 (Commercial Building Telecommunication Cabling)
- ANSI/TIA-1179-A (Healthcare)
 - OM4 is minimum MMF recommended
 - Min 2 fiber backbones
 - Array connectors

Standards Integrating New Media Types

- ANSI/TIA-942-B (Datacenter)
 - Cabinets should be at least 48" deep & wider than 24"
 - Max length for direct attach cables in EDA 7m (were 10m)
 - Direct attach cabling between rows is not recommended
 - Added MPO-16 / 32 & MPO-24
 - Recommends pre-terminated cabling
- ANSI/TIA-862-B Addendum 1 (Intelligent Building)
 - 2 fiber minimum
- ANSI/TIA-4966 Addendum 1 (Education)
 - OM4 or OM5

Optical Fiber Cabling Components

ANSI/TIA-568.3-D

- Now components & cabling (testing, polarity, etc.)
 - Polarity from TIA-568.0
 - Testing from TIA-568.0
 - Passive optical network component specs
- Splitters are part of budget
 - Specifies encircle flux launch conditions for testing MMF @ 850 nm
 - Eliminates testing @ 1300 nm
 - Raises min. return loss of SM connections & splices from 26 dB to 35 dB

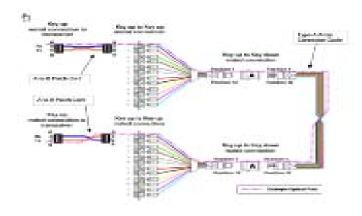
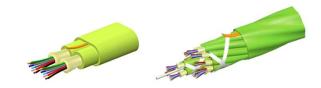


Figure 1-Concerning combant A for shipter signals

Optical Fiber Cabling Components

ANSI/TIA-568.3-D continued....

- Lowers OM3 & OM4 attenuation @ 850nm to 3.0 dB/km
- Accounts for insertion loss of reference-grade test conditions
- Demotes OM1, OM2 & OS1 to notrecommended
- Adds specification for wideband multimode fiber
- Adds specification for OSP microduct cable


Published 09/2016

In Process & New Work

Optical Fibers and Cables

- Ongoing work:
- Revising TIA-598D
 - Addendum 1: Specs for colors 13-16
 - TG formed for round robin on color measurement for colors 13-16;
 - 2nd industry ballot
 - Addendum 2: Jacket color for WBMMF
 - Approval of Lime for jacket color for OM5 fiber applications.

ANSI/TIA-PN-598-D-1 (to be ANSI/TIA-598-D-1)					
Tab	Table 1 - Individual fiber, unit, and group identification				
Position #	Base color/tracer per TIA Abbreviation/print legend				
1	Blue	1 or BL or 1-BL			
2	Orange	2 or OR or 2-OR			
3	Green	3 or GR or 3-GR			
4	Brown	4 or BR or 4-BR			
5	Slate	Slate 5 or SL or 5-SL			
6	White	6 or WH or 6-WH			
7	Red 7 or RD or 7-RD				
8	Black 8 or BK or 8-BK				
9	Yellow	9 or YL or 9-YL			
10	Violet 10 or VI or 10-VI				
11	Rose 11 or RS or 11-RS				
12	Aqua 12 or AQ or 12-AQ				
13	Lime	13 or LM or 13-LM			
14	Tan	14 or TN or 14-TN			
15	Olive 15 or OL or 15-OL				
16	Magenta 16 or MG or 16-MG				
17	Blue with Black Tracer	17 or D/BL or 17-D/BLa)			
18	Orange with Black Tracer 18 or D/OR or 18-D/OR				
19	Green with Black Tracer	19 or D/GR or 19-D/GR			
20	Brown with Black Tracer 20 or D/BR or 20-D/BR				
21	Slate with Black Tracer	21 or D/SL or 21-D/SL			

Optical Fiber Systems

New project:

TIA-568.3-D Addendum 1 Scope:

- Use of OM5 name
- Use of OS1a name
- Color for OM5 connecting hardware
- Connecting hardware color definitions
- Reference-grade to standard-grade loss allocation
- MPO testing

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8

Table 11 - Test cord loss allowance

Mated termination combination	Multimode (dB/connection)	Single-mode (dB/connection)
Reference-grade to standard-grade	0.31	0.5 ²
Standard-grade to standard-grade	0.75	0.75

Note 1 – This value is taken from ANSI/TIA-526-14, Table F.1. Note 2 – This value is taken from ANSI/TIA-526-7. Table G.1.

Llegrand®

New Work

- ANSI/TIA-570-C (Residential)
 Submitted for 2nd industry ballot
- ANSI/TIA-758-B (OSP)
 - Project request to start C revision approved
 - 1st industry ballot based on editors schedule
- Places of Assembly Task Group
 - Working on potential standard for Airports, Stadiums, Theaters, etc.

Llegrand[®]

Additional Information Available

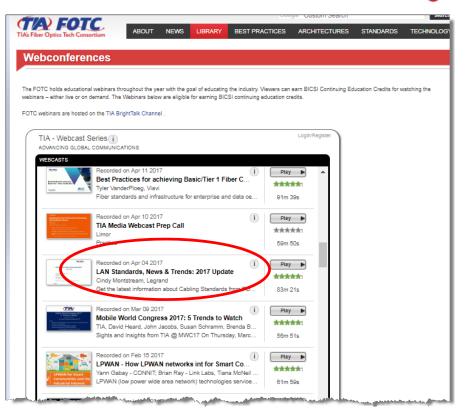
2018 BICSI WINTER CONFERENCE & EXHIBITION Orlandor Of Les Techno Free Consumery 4-8

FOTC Website Summary of current TIA standards

http://www.tiafotc.org

	GENERIC TELECOMMUNICATIONS CABLING FOR	09/14/15
NSI/TIA-568.0-D	GENERIC TELECOMMONION CUSTOMER PREMISES	09/09/15
ANSI/TIA-568.1-D	CUSTOMER PREMISES COMMERCIAL BUILDING TELECOMMUNICATIONS INFRASTRUCTURE STANDARD	04/2010
*ANSI/TIA-568-C.2	BALANCED TWISTED-PAIR TELECOMMUNICATIONS CABLING AND COMPONENTS STANDARDS	04/2010
568-C 2-1	BALANCED TWISTED-PAIR TELECOMMUNICATIONS CABLING AND COMPONENTS STANDARD, ADDENDUM 1: COMPONENTS STANDARD, ADDENDUM 2: COMPONENTS ST	06/30/16
(category 8 Addendum)	SPECIFICATIONS COMPONENTS	09/16
ANSI/TIA-568.3-D	OPTICAL FIBER CABLING STANDARD BROADBAND COAXIAL CABLING AND BROADBAND S STANDARD	7/11/11
ANSI/TIA-568-C.4	BROADBAND COARAC OF COMPONENTS STANDARD TELECOMMUNICATIONS PATHWAYS AND	11/19/15
ANSI/TIA-569-D	CRACES	RE 10/21/16
560-D-1	SPACES-ADDENDEMENTS FOR	
ANSI/TIA-569-D-1	TELECOMMUNICATIONS	08/16/12
*ANSI/TIA-570-C	RESIDENTIAL TELECOMMON INFRASTRUCTURE STANDARD FOCIS 18 Fiber Optic Connector Intermateability	11/23/2015
ANSI/TIA-604-18	Standard-Type Internet COD	6/22/12
*ANSI/TIA-606-B	TELECOMMUNICATION	12/23/20
TIA-606-B-1 Addendum to TIA	ADMINISTRATION STANDARD FOR TELECOMMUNICATIONS INFRASTRUCTURE TELECOMMUNICATIONS INFRASTRUCTURE ADDENDUM 1- AUTOMATED INFRASTRUCTU	IRE

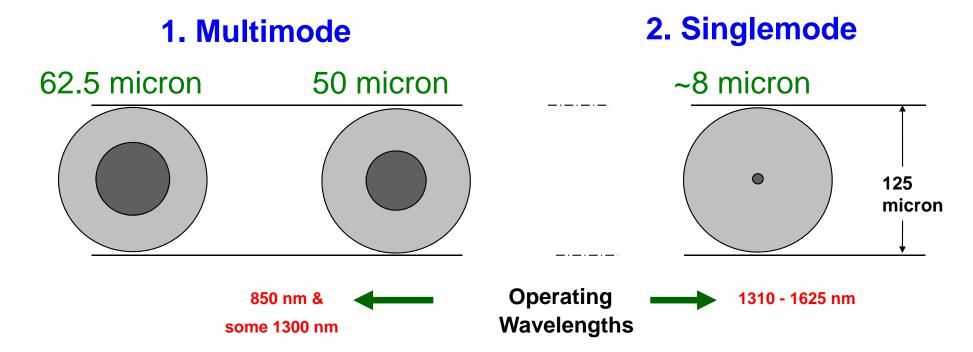
2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8


Llegrand[®]

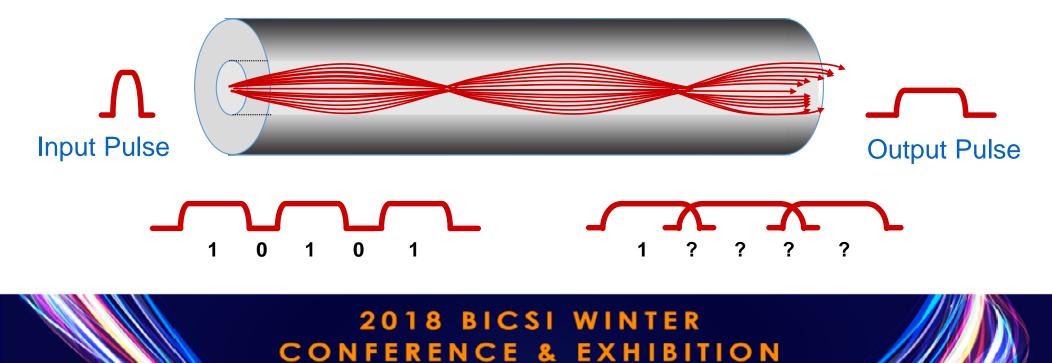
Clegrand[®]

FOTC Website LAN Standards, News & Trends 2017

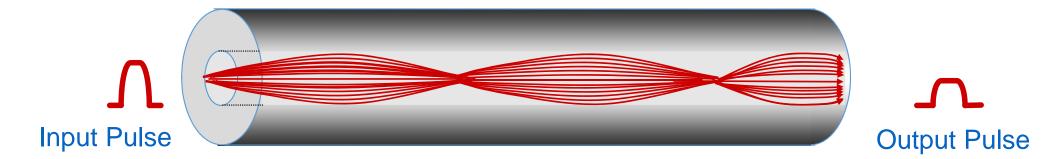
http://www.tiafotc.org


Library >Webconferences

Optical Fiber Technology


Tony Irujo Sales Engineer OFS

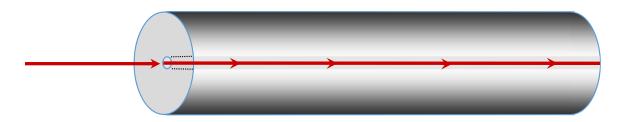
Two Basic Optical Fiber Types


Multimode Fiber

- Light Signal travels along many paths
- Pulse spreading occurs due to Modal Dispersion or Differential Mode Delay (DMD)
- Pulse spreading limits Bandwidth

Orlando, FL | February 4-8

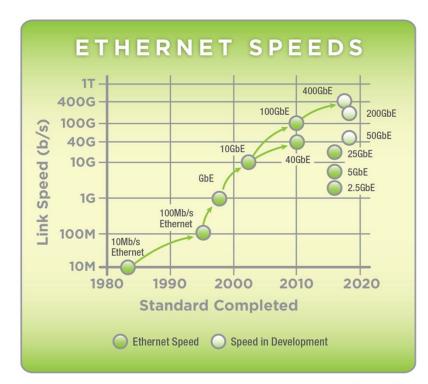
Modal Dispersion / DMD Minimized in OM3 and especially OM4 MM Fiber



Singlemode Fiber

Small core guides only one mode

- Eliminates modal dispersion.
- Enables tremendous transmission capacity over very long distances.



Multimode or Singlemode? Speed, Reach, Cost...

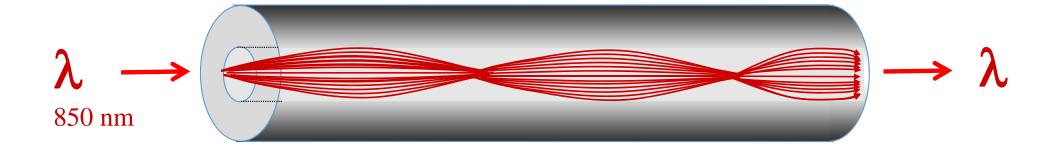
- From 10G to 100G and beyond, Multimode fiber supports reaches in the ~100 to 600 meter range (~300 to 2000 ft), depending on fiber type used (OM3, OM4, OM5), as well as transceiver type.
- Beyond 500 600 meter range, Singlemode fiber is necessary.

Generally, the total installed cost of a Multimode system continues to be less expensive than that of a Singlemode system, due to cost of the optics.

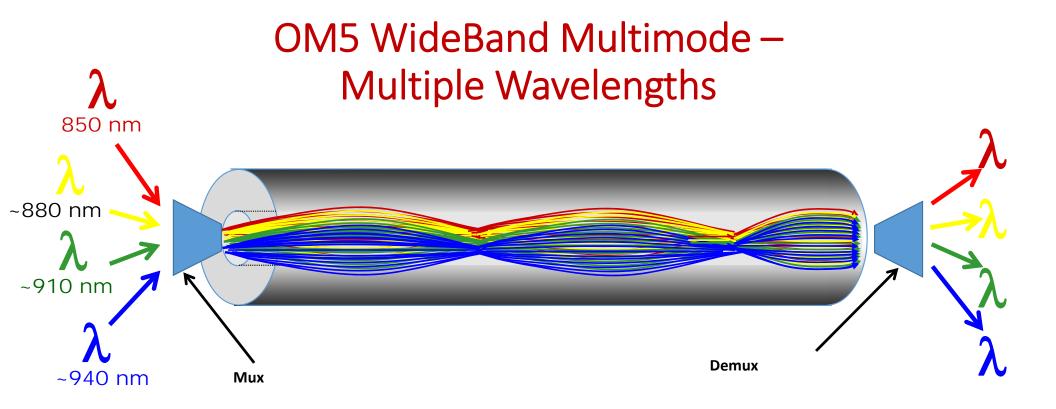
Keeping up with Rising Data Rates

"The 2016 Ethernet Roadmap", Ethernet Alliance, March 2016

Fiber is up to the task


Multimode Fiber Designation	Multimode Fiber Type	Description	Recommended Application Range
OM1	62.5 um	"FDDI"-Grade	1 Gb/s
OM2	50 um	Dual Window	1 - 10 Gb/s
OM3	50 um	Laser Optimized	10 - 100 Gb/s
OM4	50 um	Laser Optimized Extended Reach	10 - 400 Gb/s
OM5	50 um	Wideband for SWDM	40 - 400+ Gb/s on fewer fibers

New Multimode Fiber Technology



Multimode traditionally operates at one wavelength

OM5 WideBand MMF will take advantage of Wavelength Division Multiplexing (WDM) technology.

- Same as commonly used on Singlemode fiber:
 - **CWDM** (Course Wavelength Division Multiplexing)
 - **DWDM** (Dense Wavelength Division Multiplexing)
- For Multimode, it will be called SWDM –

Short Wavelength Division Multiplexing

Parallel QSFP Multimode Fiber Migration Path

			V
	10G/Fiber	25G/Fiber	$25G/\lambda - 4\lambda/Fiber$
10G	••	N/A	N/A
25G	N/A		N/A
40G	$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet$	N/A	N/A
100G		$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet$	••
400G	N/A		$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet$

SWDM 🖓

Duplex Multimode Fiber Migration Path

SWDM 🖓

			\vee
	10G/Fiber	25G/Fiber	25G/ λ - 4 λ /Fiber
10G		N/A	N/A
25G	N/A	• •	N/A
40G	$\bullet \bullet \bullet \bullet \odot \odot \odot \odot \bullet \bullet \bullet \bullet$	N/A	N/A
100G		$\bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet$	••
400G	N/A		$\mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{o} \mathbf{e} \mathbf{e} \mathbf{e} \mathbf{e}$

Singlemode Fiber

Singlemode Fiber Types (by ISO 11801 Cabling Standard convention)

SM <i>Cabled</i> Fiber Designation	Wavelength (nm)	Max CABLE Loss (dB/km)	Cable Type	Typical Reach (meters)
OS1	1310 & 1550	1.0	Typically Tight Buffer	2000
OS1a	1310, 1383 , 1550	1.0	Typically Tight Buffer	2000
OS2	1310, 1383, 1550	0.4	Typically Loose Tube	10,000

Singlemode Fiber Types

(by ITU-T Fiber Recommendation convention)

SM Fiber Designation / Category	SM Fiber Sub-Type / Class	Description
G.652	G.652.A or G.652.B	Legacy
0.052	G.652.C or G.652.D	Low Water Peak
	G.657.A1	
G.657	G.657.A2	Bend-
0.057	G.657.B2	Insensitive
	G.657.B3 / A3	

Multimode vs. Singlemode Cost Considerations

PMD	Fiber Type	Relative Transceiver Cost	Power Consumption (Watts, max)
10GBASE-SR	MM	1	1
10GBASE-LR	SM	2	1 – 1.5
40GBASE-SR4	MM	4	1.2 – 1.5
40GBASE-LR4	SM	20	3.5
100GBASE-SR10	MM	8	3.5 – 4
100GBASE-LR4	SM	100	3.5 – 5

MM continues to be more cost effective than SM for short reach

- Cost of optics (transceivers) dominates link.
- Power Consumption of MM optics is typically less than SM.

Cost References: <u>www.sanspot.com</u> <u>www.cdw.com</u> June 2017 Power Consumption References: <u>www.finisar.com</u> <u>www.fit-foxconn.com</u> Aug. 2017

Conclusions

- ✓ Data Rates are increasing at ever faster rates ($10G \rightarrow 40G \rightarrow 100G \rightarrow 200G \rightarrow 400G$)
- OM1 and OM2 MM fibers are becoming obsolete.
 OM3 & OM4 are the current "work horse" MM fibers.
 OM5 is the next generation of MM for high speed SWDM applications (Data Centers).
- ✓ Industry has moved to Low / Zero Water Peak SM fiber (G.652.D)
 Industry steadily moving to Bend-Insensitive SM fibers (G.657.xx)
- ✓ MM links continue to be more economical than SM for short reach (*transceiver cost*).

Fiber Market Trends

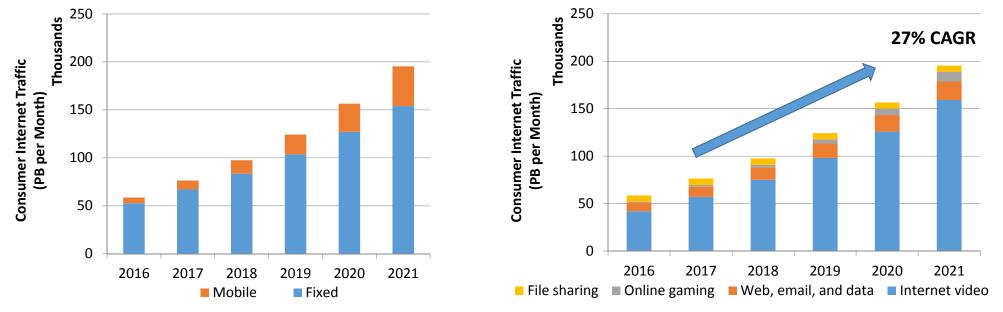
Darryl Heckle

Global Multimode Product Line Manager

Corning Incorporated

Bandwidth Drivers

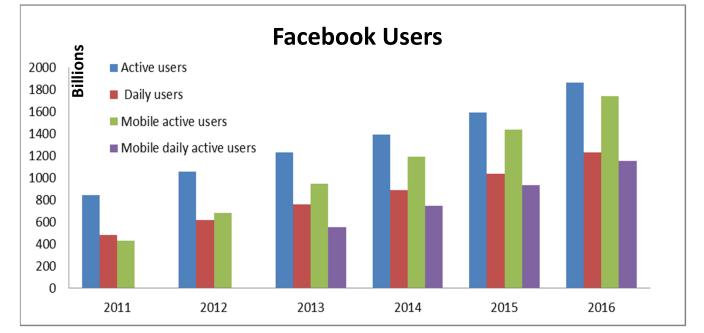
It's All About The Cloud


Companies			
Rackspace	YouTube		
Salesforce	Facebook		
Google	Amazon Web Services		
Microsoft	Netflix		

Global Network Traffic Growth Forecast

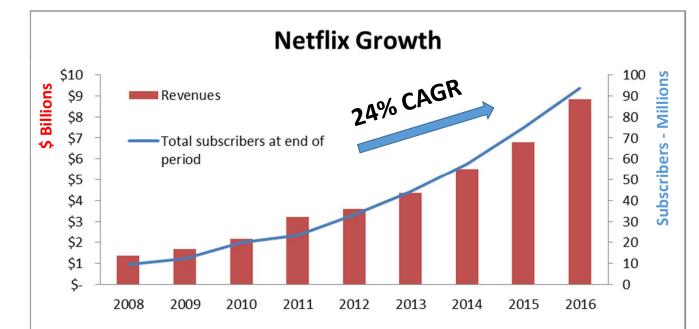
	2016	2021
Internet Users (% of population)	44%	58%
# Devices & Connections (per capita)	2.3	3.5
Avg. Speeds	27.5 Mbps	53.0 Mbps
Avg. Traffic (per capita per month)	12.9 Gb	35.5 Gb

Source: Cisco VNI, 2017


Global Consumer IP Traffic Growth Video Applications Driving Growth

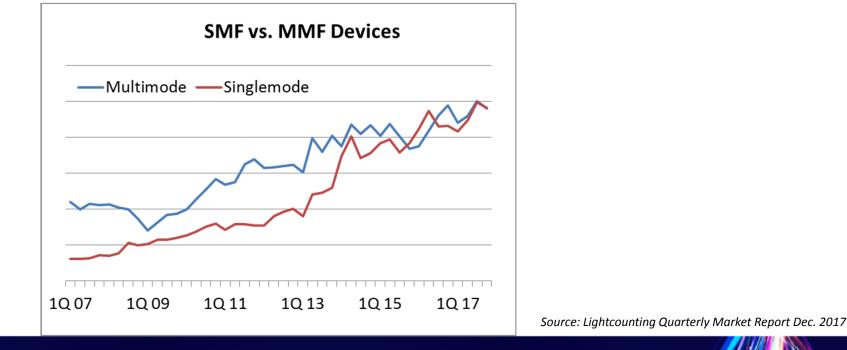
Source: Cisco VNI, 2017

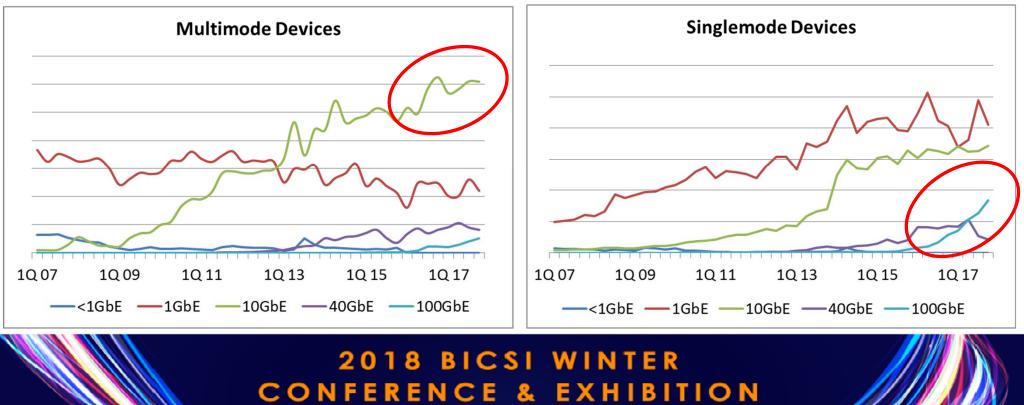
Internet Applications Mobile access driving growth


- Facebook (as of Sept 2017)
 - 2.07 billion active users, 1.37 billion daily users

Source: http://newsroom.fb.com/Key-Facts

Internet Applications Significant growth for on demand video

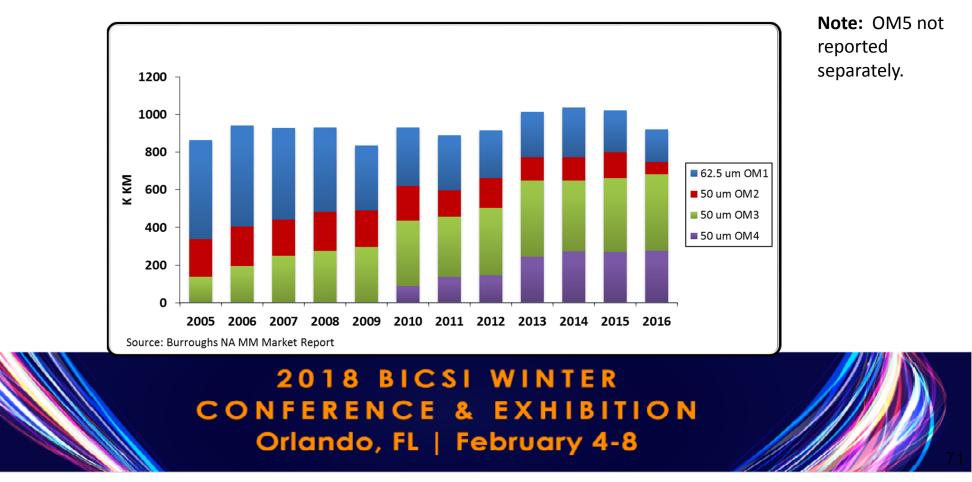

- Netflix (2017 Forecast)
 - 115.55 million members
 - \$11.7 billion revenue


Source: http://ir.netflix.com/index.cfm

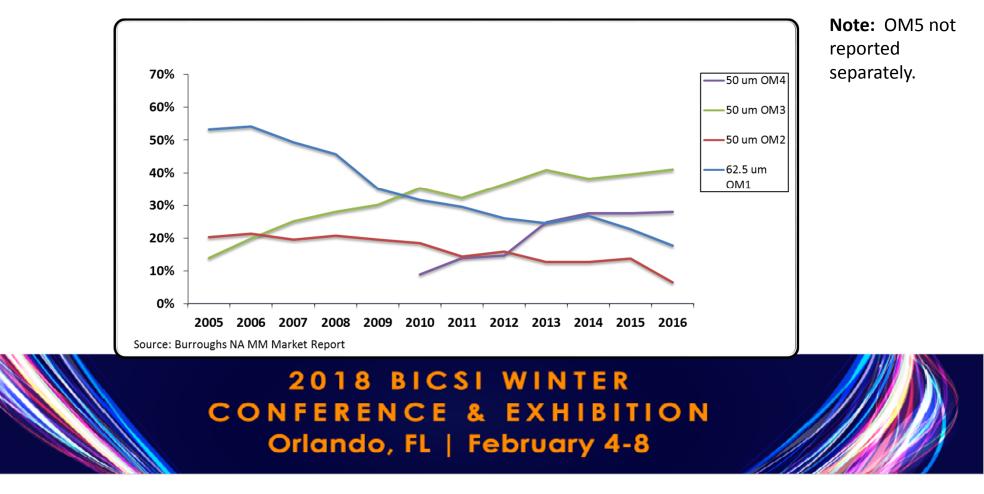
Ethernet Market

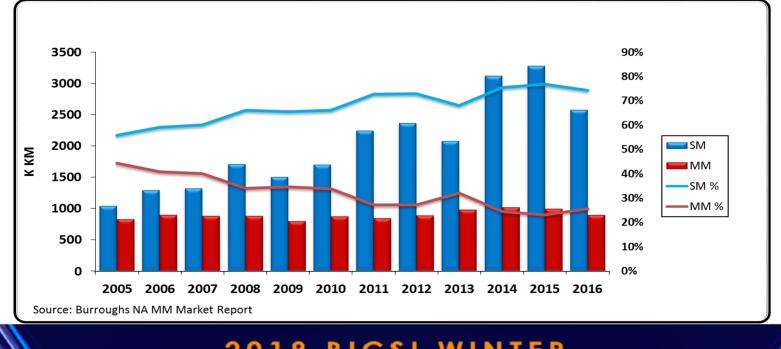
Ethernet Transceivers Sales SMF and MMF device sales continues to grow

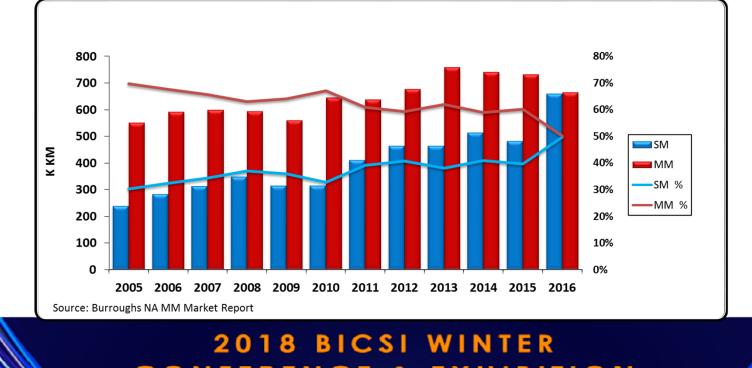
MMF and SMF transceiver speeds Strong growth in 10G MMF; 100G SMF


Source: Lightcounting Quarterly Market Report Dec. 2017

ONFERENCE & EXHIBITIC Orlando, FL | February 4-8


Fiber Market Trends


NA Multimode Fiber Volume by Type OM3+4 volume growing; OM1+2 declining


NA Multimode Fiber Mix by Type OM3+4 share growing at expense of OM1+2

MM vs. SM in the Enterprise *All Cable Types*

MM vs. SM in the Enterprise *Tight Buffer Cable*

CONFERENCE & EXHIBITION Orlando, FL | February 4-8

Conclusions

- ✓ Bandwidth demands continue to increase
 - ✓ Mobile usage; video; social media
- ✓ Ethernet device demand continues to increase
 - ✓ Strong growth in MMF 10G networks
 - ✓ SMF devices growing, fastest at 100G
- ✓ OM4 demand continues to increase

Standard and Non-standard Transceivers Update

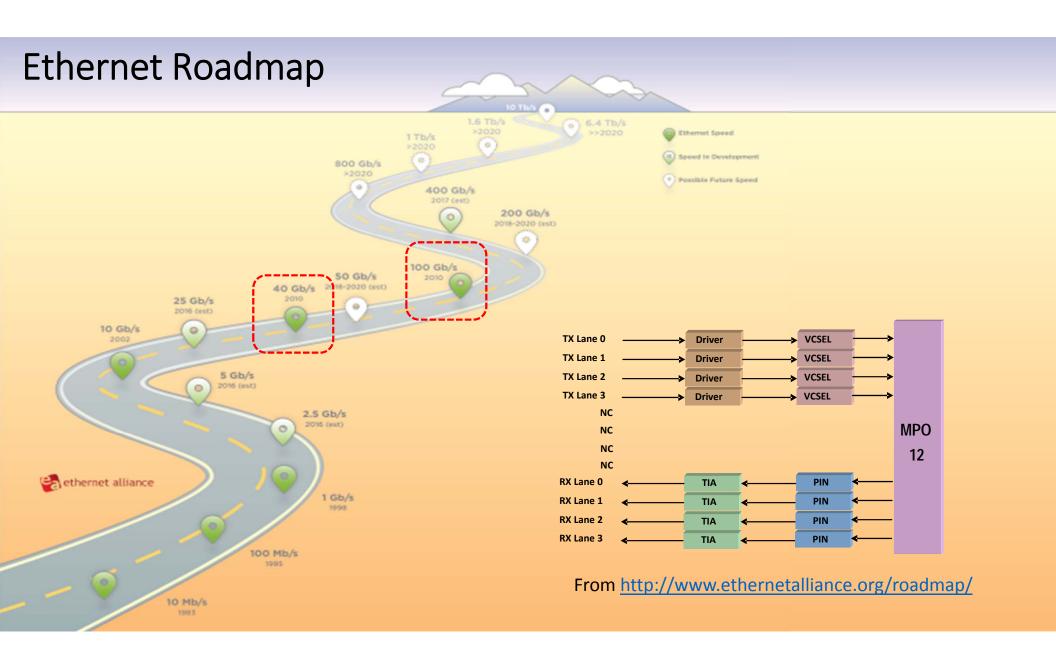
Robert Reid, Sr. Technical Manager

Panduit Inc.

Current Transceiver Form Factors (>=10G)

		Contract Mark	
SFP	SFP+	XFP	SFF
	A Contraction of the second se	and the second s	5
XENPAK	X2	GBIC	CXP
			Care -
QSFP/QSFP+	CFP	CFP2	CFP4


Transceiver Macro Trends


- Support of Installed Base: 16/32GFC, 40GbE, 100GbE, 128GFC support (& beyond) on installed MMF
- Lane rates > 25 Gb/s: Technology enabling VCSEL operation at 50 Gb/s and beyond (future generations of single/multi lane optics)
- Wideband MMF (OM5): Standardization of wideband multimode fiber enabling SWDM transmission onto single fibers reducing fiber count (duplex-LC interface) for 40GbE, 32GFC and above
- Emergence of Cost Effective SM Optics: Driven by large volumes consumed by H-Scale entities

10G Transceiver History

High Cost				Low Cost	_ `
		Risk Designs Volume		High Volum Tooling Inte	
Item	300 Pin	XENPAK	X2	XFP	SFP+
Size (sq. in.)	10	<mark>6.7</mark> 5	5	2.2	1.2
Power (Watts)	10	8	4	2.5	1
Density	4	8	16	16/32	48

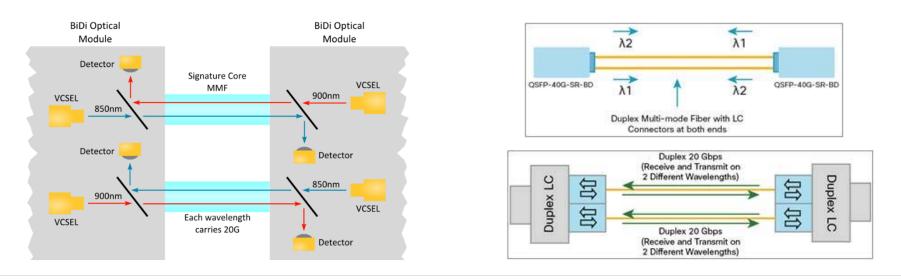
>10G Transceiver Roadmap

Media Device Interface (10G to 100G)

Application	10GBASE- SR	25GBASE- SR	40GBASE- SR4	100GBASE- SR10	100GBASE- SR4**
Data Rate	10 Gbps	25 Gbps	40 Gbps	100 Gbps	100 Gbps
IEEE Std	802.3ae	TBD	802.3ba	802.3ba	802.3bm
Form Factor	SFP+	TBD	QSFP+	CFP, CXP	QSFP28, CFP4
Fiber Type	OM3/4	OM3/4	OM3/4	OM3/4	OM3/4
Reach*	300/400m	70/100m?	100/150m	100/150m	70/100m
# of Fibers	2	2	12 (8 used)	24 (20 used)	12 (8 used)
Connectors	and the second	Station of the state			
	Duplex LC	Duplex LC	12f MPO	24f MPO (2 x 12)	12f MPO
Schematic					

802.3 Media Device Interface (MDI) *1.5 dB Link Budget

**IEEE P802.3bm approved May 10, 2015

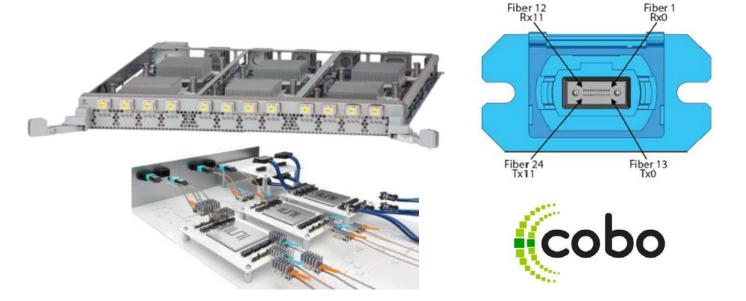

40GBASE-eSR4 'Extended'

- "Extended Reach" transceivers now available from multiple vendors
- Operates as 4 x 10G
 - QSFP+ has 2.5X edge-density as 10GBASE-S
- Operates as 1 x 40G
 - 300m/400m (OM3/OM4) vs. 100m/150m for SR4
- Lower cost alternative to SM (40GBASE-LR4 QSFP+)
 - Lower CAPEX Estimated 75%
 - Lower OPEX 50% power dissipation (1.5W vs. 3.5W)

Bidirectional SFPs

- BiDi short for bidirectional
- 40G Ethernet over two fibers (100G coming!)
- Allows use of existing LC infrastructure
- Uses Wavelength Division Multiplexing 2 x 20 Gbps signals

'Universal' Transceivers


- Addresses customer concerns around the reduced distances with 40GBASE-SR4
- Migrations from existing 10 to 40GbE networking without requiring redesign/expansion of fiber network
- Supports operation over 150 m of OM3 or OM4
- Can be used for up to 500 m and with both 40GBASE-LR4 and 40GBASE-LRL4

Embedded Multispeed Ports

12 Port MXP Triple-speed line card for Arista 7500E Series switch Channel mapping for 24f MXP triple-speed port

Fibre Channel Higher Speed Optics

- FC 32G PI-6 (bit rate 28.05Gbps)
 - Published & SFP+ Transceivers shipping
- FC 128G PI-6P (Aggregate bit rate 4x28.05 Gbps)
 - MMF: 4 parallel lanes of 32G with breakout use cases implied
 - SMF two options: 4 parallel fibers & CDWM
- FC 64G per fiber PI-7 & PI-7P (bit rate 56.1 Gbps per fiber)
 - Combine both 64GFC/256GFC (breakout?)
 - Modulation format (PAM-4) and 2/4 wavelength solutions
 - WideBand MMF is being introduced as a solution and cable plant models based on TIA/IEC standards being modeled

2km SM version for ICL & 16G MM reach version for switch port app's

Fiber Channel Roadmap

	Product Naming	Throughput (Mbytes/s)	Line Rate (Gbaud)	T11 Specification Technically Complete (Year)*	Market Availability (Year)*	
	1GFC	200	1.0625	1996	1997	
	2GFC	400	2.125	2000	2001	
	4GFC	800	4.25	2003	2005	
Fibre Channel	8GFC	1,600	8.5	2006	2008	
	16GFC	3,200	14.025	2009	2011	
	32GFC	6,400	28.05	2013	2016	
	128GFC	25,600	4X28.05	2014	2016	
	64GFC	12,800	56.1	2017	2019	٦
	256GFC	51,200	4X56.1	2017	2019	\int
	128GFC	25,600	TBD	2020	Market Demand	
	256GFC	51,200	TBD	2023	Market Demand	
	512GFC	102,400	TBD	2026	Market Demand	
	1TFC	204,800	TBD	2029	Market Demand	

New Fiber Challenges

- Newer network designs (e.g., Flat Networks) require <u>more</u> transmission media to enable scalable and higher density solutions
- Large Enterprise/Webscale DCs are challenged to deal with significant transitions in the market to higher speed and <u>longer reach</u> channels
- Seamless infrastructure migration plans are necessary as data center port speeds are increasing (10Gb to 40Gb to 100Gb)

Hyperscale Market Segmentation

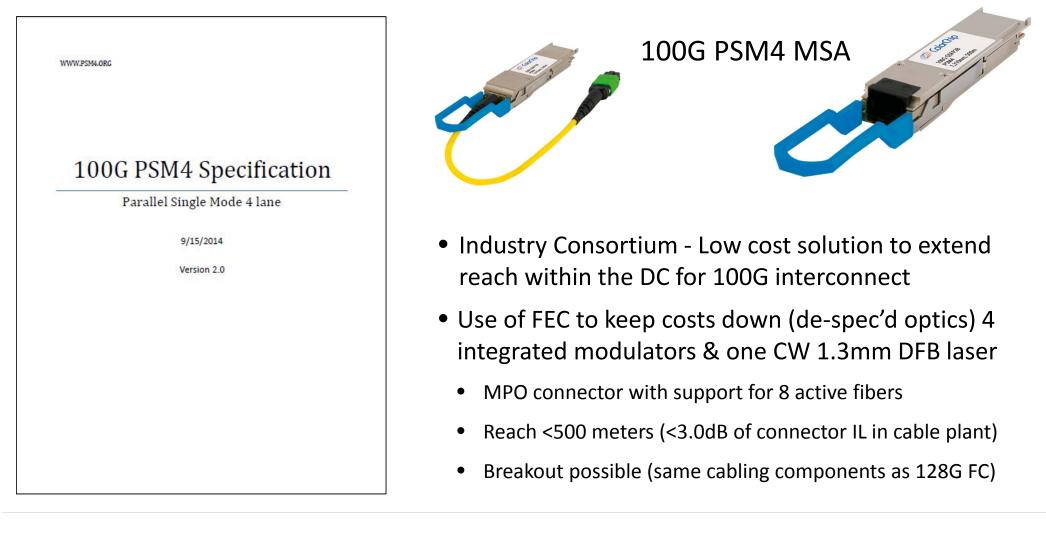
Google Mayes County

SuperNAP Las Vegas

LangFang DC - China

Cloud/SP customers want REACH & cost effective 100G!!!!

100G SMF Standards Activity


IEEE802.3bm task force named three contending technologies for SMF (link distance ≤2km) at its final closure in 2014.

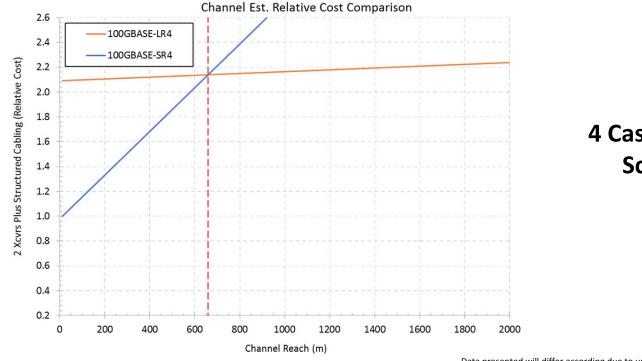
- CWDM (coarse wavelength-division-multiplexing),
- PSM4 (parallel single-mode fibers with 4 lanes in each direction)
- PAM-8/16 (pulse amplitude modulation with 8/16 levels)

Several multi-source-agreement (MSA) consortia formed.

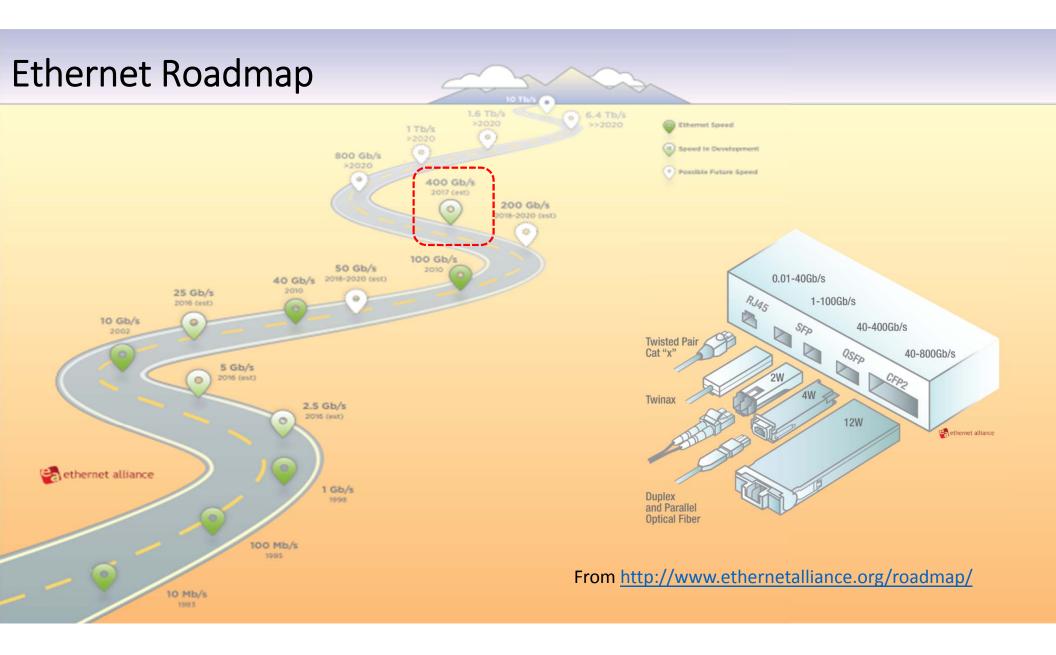
- PSM4 is called "100G PSM4" (<u>psm4.org/</u>)
- CWDM/CWDM4 (<u>cwdm4-msa.org/</u>) & CLR4 (<u>clr4-alliance.org/</u>)
- Companies working on 100G PAM-4, no MSA has been formed

Emergence of SM Solutions

CWDM4 & CWDM4-OCP


- 100G CWDM4-MSA
 - QSFP-28 form-factor
 - Single-mode duplex fiber
- CWDM4-OCP:
 - Relaxed specification for DCs
 - Reduced temperature range
 - Reduced link budget

	CWDM4-OCP Relaxed Specification	CWDM4 MSA Base Specification
Reach	500 m	2000 m
Link loss	3.5 dB	5 dB
Operating Case Temperature	15-55 deg C	0-70 deg C

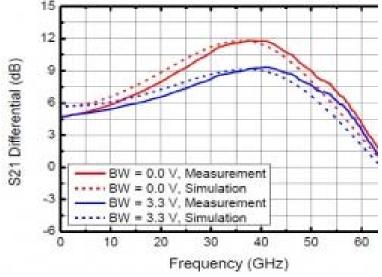

CWDM4-OCP version (FaceBook)

100G Xconnect Channel Compare

4 Cassette Link Scenario

Data presented will differ according due to unique installation and application requirements

400G Candidate Technology


- <u>Serial</u> Signaling rate of VCSEL transmitter (40GHz to 60GHz has been demonstrated)
- <u>Parallel</u> Multiple lane aggregation (SR4, SR10, SR16)
- <u>WDM</u> Wide Band MMF designed to take advantage of this (new fiber designed to enable 4+ wavelengths)
- <u>Encoding</u> Conventional is NRZ (two symbols symbol rate same as bit rate). PAM-4 encodes two bits in one transmission interval

Modulation Enabler (update)

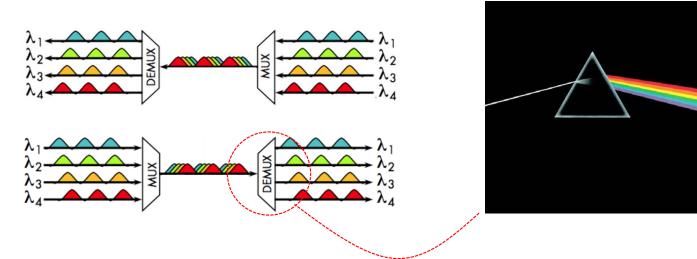
VI Systems demonstrates the performance of their latest generation of 850nm vertical surface emitting laser (VCSEL) to transmit at a data rate of 54 Gbit/s over 2.2 km of multimode fiber.

BERLIN, Germany, Apr 11, 2016

Customer samples of the VCSEL driver and TIA chip are available now June 27, 2017

"Brute Force" - Multiple Lanes

- Move toward 16 fiber units?
- Discussions in IEEE/TIA to support:
 - 32/16-pin MPO connectors (TR 42.13)
 - Polarity descriptions that cover n-number of fiber units (TR 42.11)
 - 4 new fiber colors to support 16-fiber ribbons bundles (TR 42.12)
- Likely upgrade paths (MM) results in units of 4 fibers:
 - $40G \div 10G$ per fibre = 8 (2x4F) fibers
 - 100G ÷ 25G per fibre = 8 (2x4F) fibers
 - 400G ÷ 25G per fibre = <u>32</u> (2x16F) fiber's



2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8

32F/16F MPO?

SWDM Module Technology

- Multiple VCSELs at different wavelengths around 850 nm
- Passive optical multiplexing of light occurs within the module
- On Rx side, demultiplexing (using the same type of passive optic)

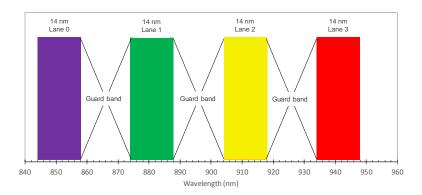
SWDM Module Technology

"Multi-Source Agreement" (MSA) defining use of the 840nm to 953nm wavelengths for the WDM transmission over WBMMF & non-WBMMF......40G/100G SWDM4 released.

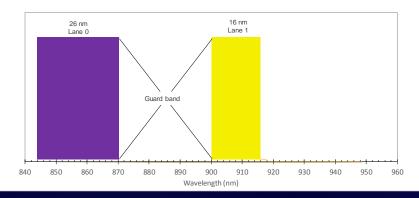
Pros:

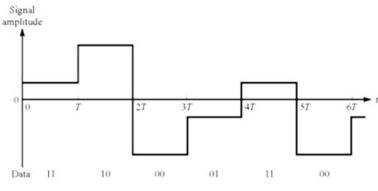
- Extends lifetime of MMF solutions
- Provides legacy (OM3/OM4) cable solution for 40G+
- >100G 'Toolbox' item (encoding, line rate & parallel)

Cons:


- SWDM ecosystem transceivers/fiber expensive
- Transceiver complexity, power consumption
- SWDM doesn't support breakout

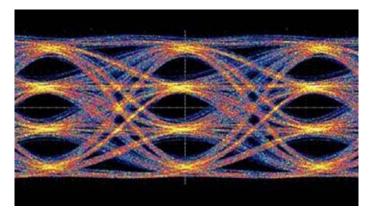
SWDM Wavelengths (2λ vs. 4λ)


4λ SWDM


- Tighter specs
- Higher WDM insertion loss
- Increased cross-talk penalty
- Higher power VCSELs required
- Higher power dissipation

2λ SWDM Proposed in P802.3cd

- Larger guard band
- Wider spectral windows
- Lower WDM IL



PAM-4 Multilevel Encoding

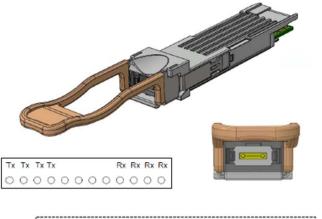
- 4 distinct pulse amplitudes used
- Amplitude represented by two bits 00, 01, 11, and 10 (a 'symbol')
- One of the four amplitudes is transmitted in a symbol period, there are two bits transmitted in parallel (data rate doubled)
- PAM-4 modulation is twice as bandwidth-efficient as binary modulation

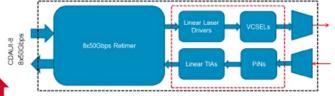
Fig.1 A PAM-4 signal in time domain._T= symbol period.

Options for Next Gen MMF PMDs

Technology (per fiber)	1 fiber pair	2 fiber pairs	4 fiber pairs	8 fiber pairs	16 fiber pairs
25G-λ NRZ	25G-SR		100G-SR4		400G-SR16
50G-λ PAM4	50G-SR	100G-SR2	200G-SR4	400G-SR8	
2x50G-λ PAM4	100G-SR1.2	200G-SR2.2	400G-SR4.2	Technology options for 200 & 400 Gb/s links over fewer MMF fiber pairs	
4x25G-λ NRZ	100G-SR1.4	200G-SR2.4	400G-SR4.4		
4x50G-λ PAM4	200G-SR1.4	400G-SR2.4	800G-SR4.4		

Existing IEEE Standards


SRm.n m = # of Fiber Pairs n = # of Wavelengths


In Progress

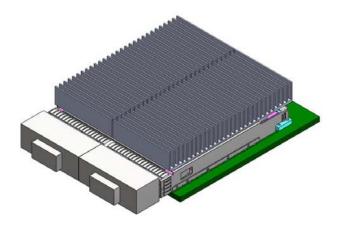
n = # of Wavelength

400GBASE-SR4 Example

400G VCSEL100m SR4 OM4 MMF, (Two VCSEL λ , 4+4 MPO) DD-QSFP (or OSFP) Form Factor

- 8x50Gbps PAM4 Dual λ VCSEL [looks like SR4 to the end user]
- 4+4 MMF MPO up to 100m OM4
- Uses Same Fiber as 40G SR4 and 100G SR4
- 850nm and 910nm High Reliability VCSEL Sources
- Two VCSEL Wavelengths per Fiber
- Runs at 8x50G but Uses Fiber Like a 4x100G Link
- Commercially available 8x50Gbps Retimer ICs
- Lower cost than any 400G SMF media
- Low power dissipation than any 400G SMF media

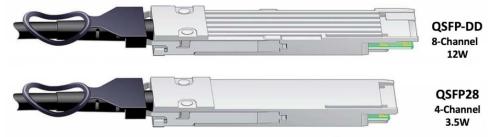
400G MSAs


	CFP8	QSFP-DD	OSFP
Size(HxLxT)	40x102x9.5	18.35x89.4x8.5	22.58x107.8x13.0
Terminal Capacity	12-18W	7-10W	12-15W
Organization	http://www.cfp-msa.org/	http://www.qsfp-dd.com/	http://osfpmsa.org/

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlandor of Later Information 4-8

www.ti

CFP8 - Targeted @ 400G


- 8 lane version of CFP MSA
- Supports up to 16 lanes vs. 4 of QSFP or QSFP28
- Each of the 16 lanes operates at 25G
- Max. 16 OSFPs per std. linecard slot
- Backward compatible to QSFP & QSFP28

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlandor of Les Technologie Contraction of the State o

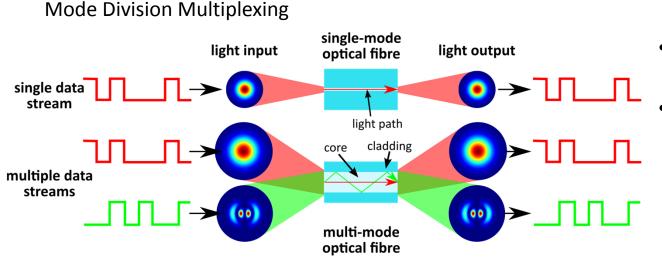
QSFP DD - Targeted @ 400G

- Quad Small Form Factor Pluggable Double Density
- Supports 8 lanes vs. 4 of QSFP or QSFP28
- Each of the 8 lanes operates at 50G (4x rate of QSSP28)
- Max. 36 OSFPs per std. linecard slot
- Backward compatible to QSFP & QSFP28

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlandor of Les Techn Free browary 4-8

OSFP - Targeted @ 400G

- Octal Small Form Factor Pluggable
- Slightly Wider & Deeper than QSFP
- Not Backwards Compatible with QSFP or QSFP28
- Max. 32 OSFPs per std. linecard slot
- Roadmap to produce 800G (4x100G)


2018 BICSI WINTER CONFERENCE & EXHIBITION Orlandor of Ls Techn Free browary 4-8

QSFP DD & OSFP - New MDI

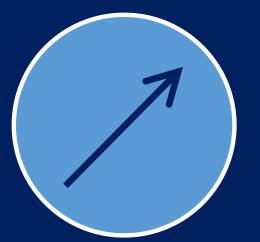
www.ti

Future Technology for MMF

- Has been used to extend the capability of 'legacy' MMF (62.5/125)
- May require the development of a new breed of MM fibers to optimize for many channels
 - "Few Moded Fibers"
 - (I call these 'Oligo'-mode fibers)

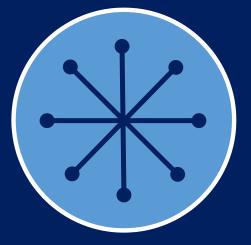
2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8

High Speed migration options

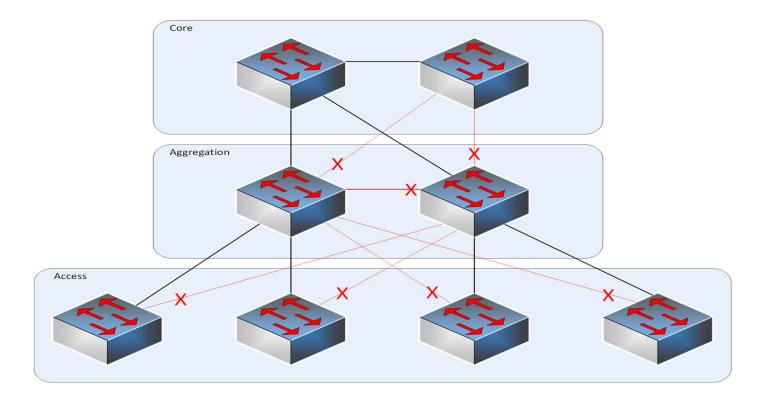

Rodney Casteel RCDD/NTS/OSP/DCDC

CommScope – Sr. Field Application Engineer

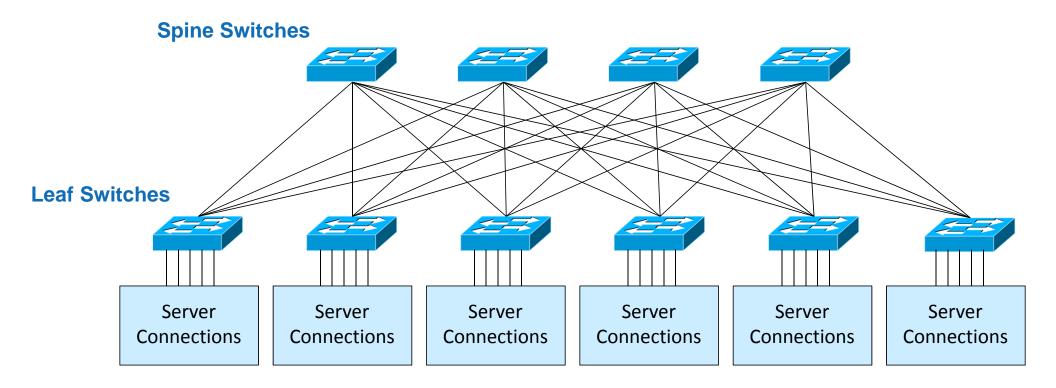
Chair – TIA Fiber Optic Technology Consortium


Data Centers undergoing change

Bandwidth Explosion



Cloud Computing



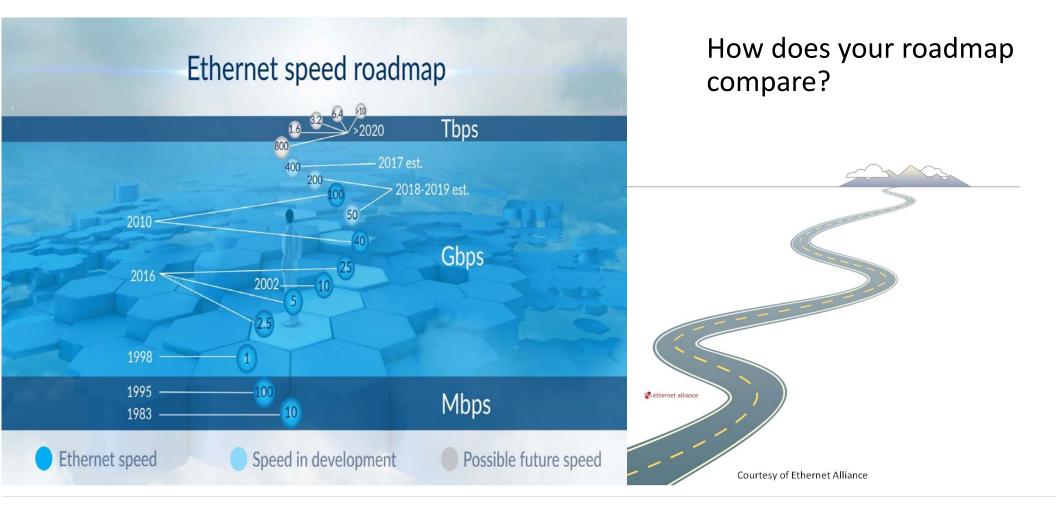
Internet of Things

Data Center Model Traditional 3-Tier Architecture Model

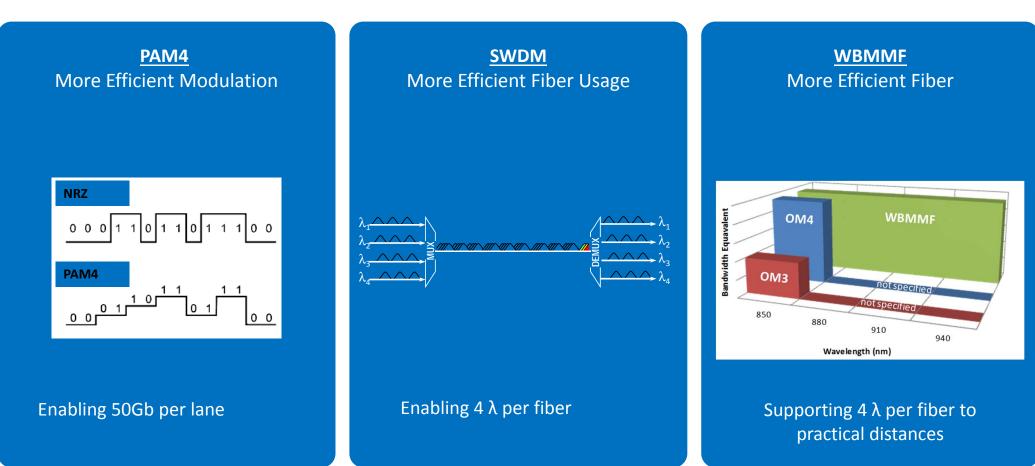
Data Center Model: Leaf/Spine design

Data Center Model

Two options for cabling infrastructure architecture:


- 1. Serial Duplex
 - With SM limited by equipment
 - With standard OM 3/4 multimode limited by existing serial transceivers
 - With WBMMF more options for long term higher speed migration
- 2. Parallel
 - Can be used with SM and MM fiber
 - Can be used with WBMMF
 - Requires more fibers

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8


WHAT IS HIGH SPEED ?

Application	Standard	Fiber	Rated Reach	Max. Channel Loss at Rated Reach (dB)	Connection and Splice Loss Allocation at Rated Reach (dB)	
10-Gigabit Ethernet	10GBASE-SR	MM	400 m (OM4)	2.9	1.5	
	10GBASE-LX4	MM	300 m	2.0	1.5	
	10GBASE-LRM	MM	220 m	0.4	1.5	
	10GBASE-LR	SM	10 km	6.0	2.0	
	10GBASE-ER	SM	40 km	11.0	2.0	
	25GBASE-SR	MM	100 m (OM4)	1.9	1.5	
25-Gigabit Ethernet	25GBASE-LR	SM	10 km	6.3	2.0	
Ethemet	25GBASE-ER	SM	40 km	18.0	2.0	
	40GBASE-SR4	MM	150 m (OM4)	1.5	1.0	
40-Gigabit	40GBASE-FR	SM	2 km	4.0	3.0	
Ethernet	40GBASE-LR4	SM	10 km	6.7	2.0	
	40GBASE-ER4	SM	40 km	18.5	2.0	
	50GBASE-SR	MM	100 m (OM4)	1.9	1.5	
50-Gigabit Ethernet	50GBASE-FR	SM	2 km	4.0	3.0	
	50GBASE-LR	SM	10 km	6.3	2.0	
	100GBASE-SR10	MM	150 m (OM4)	1.5	1.0	
100-Gigabit Ethernet	100GBASE-SR4	MM	100 m (OM4)	1.9	1.5	
	100GBASE-SR2	MM	100 m (OM4)	1.9	1.5	
	100GBASE-DR	SM	500 m	2.6 to 3.0 depending on discrete reflectance	2.35 to 2.75 depending on discrete reflectance	
	100GBASE-LR4	SM	10 km	6.3	2.0	
	100GBASE-ER4	SM	40 km	18.0	2.0	

Application	Standard	Fiber	Rated Reach	Max. Channel Loss at Rated Reach (dB)	Connection and Splice Loss Allocation at Rated Reach (dB)	
	200GBASE-SR4	MM	100 m (OM4)	1.9	1.5	
200-Gigabit	200GBASE-DR4	SM	500 m	3.0	2.75	
Ethernet	200GBASE-FR4	SM	2 km	4.0	3.0	
	200GBASE-LR4	SM	10 km	6.3	2.0	
	400GBASE-SR16	MM	100 m (OM4)	1.9	1.5	
400-Gigabit	400GBASE-DR4	SM	500 m	3.0	2.75	
Ethernet	400GBASE-FR8	SM	2 km	4.0	3.0	
	400GBASE-LR8	SM	10 km	6.3	2.0	
	40G-BDi	MM	200 m (OM5)	1.4	0.8	
	40G-SWDM4	MM	440 m (OM5)	3.3	2.0	
	100G-SWDM4	MM	150 m (OM5)	1.8	1.4	
	3200-M5-SN-S	MM	20 m (OM2)	2.0	1.5	
	3200-M5E-SN-S	MM	70 m (OM3)	1.9	1.5	
	3200-M5F-SN-I	MM	100 m (OM4)	1.9	1.5	
	3200-SM-LC-L	SM	10 km	6.3	2.0	
	128GFC-SW4	MM	100 m (OM4)	1.4	1.0	
	128GFC-PSM4	SM	500 m	3.0	2.75	
	128GFC-CWDM4	SM	2 km	4.1	3.0	
	64GFC	MM				
	64GFC	SM				
	256GFC	MM				
	256GFC	SM				
	100G-PSM4	SM	500 m	3.3	3.0	
	100G-CDWM4	SM	2 km	5.0	3.9	
	100G-LRL4	SM	2 km	4.0	3.0	

Technologies Enabling Higher Capacity per Fiber

Higher Speed Strategies

Data Rate	10G NRZ Parallel TX RX	25G NRZ Parallel TX RX	50G PAM4 Parallel TX RX	10, 25, 50G WDM & Parallel TX RX	4λ WDM enabling factor of 4 fiber count reduction
40G		N/A	N/A		Imagine running 10G, 40G, 100G, 200G
100G					over the same WBMMF cable plant using duplex LC connections * Legend
200G					parallel fiber transmission
400G					WDM transmission WDM + parallel transmission

*Parallel fibers remain essential to support break-out functionality

40G/100G Applications and Multimode Fiber

Maximum reach based on Standards, MSAs and/or vendor specifications

	Standard	# fibers	maximum distance						
40G	40GBASE-SR4	(8)	OM3 100 m OM4/OM5	150 m					
	40G-BiDi	(2)	OM3 100 m* OM4 OM5	150 m*	200 m				
	40GBASE-eSR4	(8)	OM3 OM4/OM5			300 n	n l	400 m	I.
	40G-SWDM4	(2)	OM3 OM4 OM5		240 m	*	350 m*		440 m
100G	100GBASE-SR4	(8)	OM3 70 m OM4/OM5 100 m						
	100GBASE-SR10	(20)	OM3 100 m OM4/OM5	150 m					
	100GBASE-eSR4	(8)	OM3 OM4/OM5		200 m	300 r	n		
	100G-SWDM4	(2)	OM3 75 m* OM4 100 m* OM5	150 m			M3/OM4 effecti ly specified at		dwidth

"In addition to supporting the same 850nm and 1300nm applications as OM4, OM5 provides advantage in the support of future applications using WDM in the wavelength range 850nm to 953nm" (FDIS ISO/IEC 11801-1)

MPO Options

• HIGHER DENSITY

٠

٠

٠

- FEWER COMPONENTS
- MORE COST EFFECTIVE

LARGE EMBEDDED BASE

24 FIBER

12 FIBER

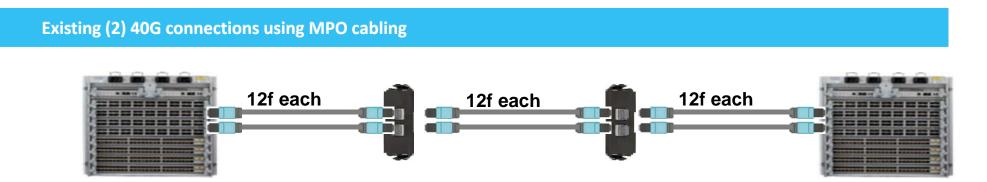
• SAME AS 12 EXCEPT ONLY USES 8 FIBERS

GLOBALLY RECOGNIZED STANDARD

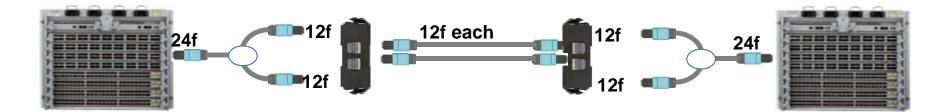
SUPPORTS MULTIPLE POLARITY SCHEMES

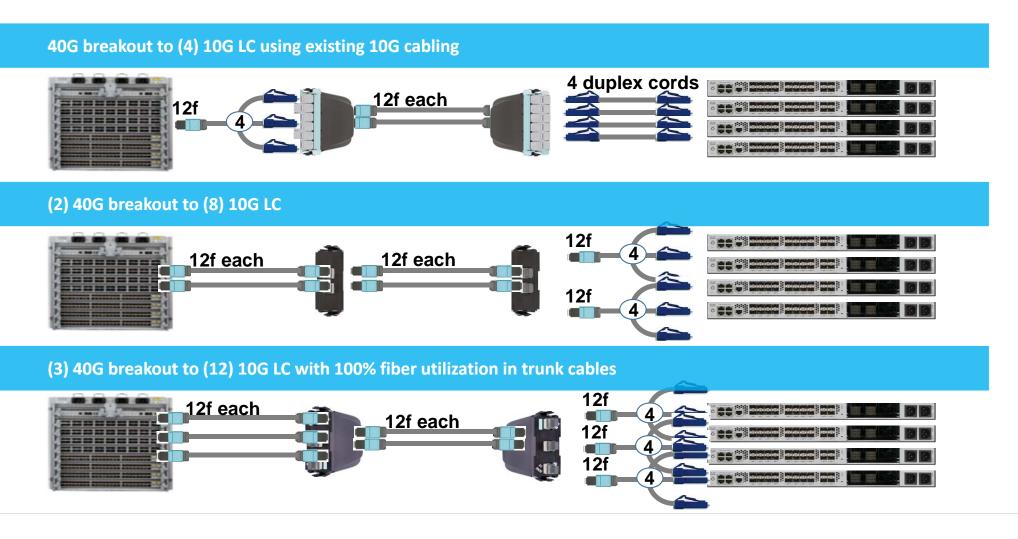

- NOT REALLY A STANDARDS RECOGNIZED INTERFACE
- USED MOSTLY FOR –SR4 APPLICATIONS

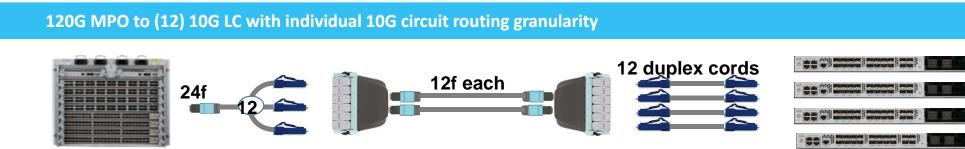
8 FIBER

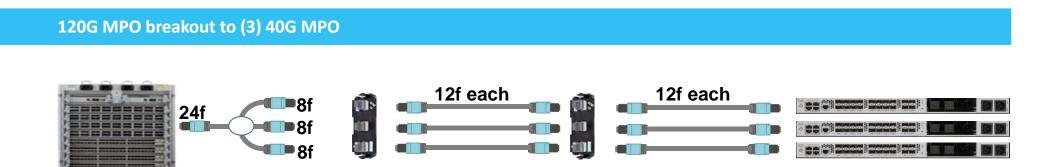

Array Connectivity = Application Support Flexibility

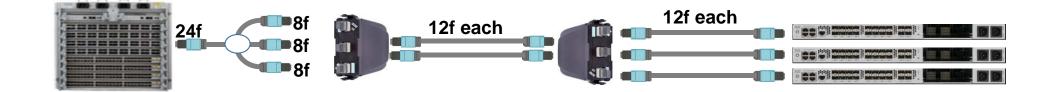
multiple 2-fiber applications on 12f cabling	MPO 12 active fibers	12f	6 x duplex LC
40G-SR4 breakout to 10G-SR	MPO 8 active fibers	12f 4	4 x duplex LC
120Gb/s breakout to 10G-SR	MPO 24 active fibers	24f	12 x duplex LC
120Gb/s breakout to 40G-SR4	MPO 24 active fibers	24f 3 8f 8f 8f	3 x MPO 8 active fibers each
100G-SR10 on 12f cabling	MPO 20 active fibers	24f 2 12f	2 x MPO 10 active fibers each

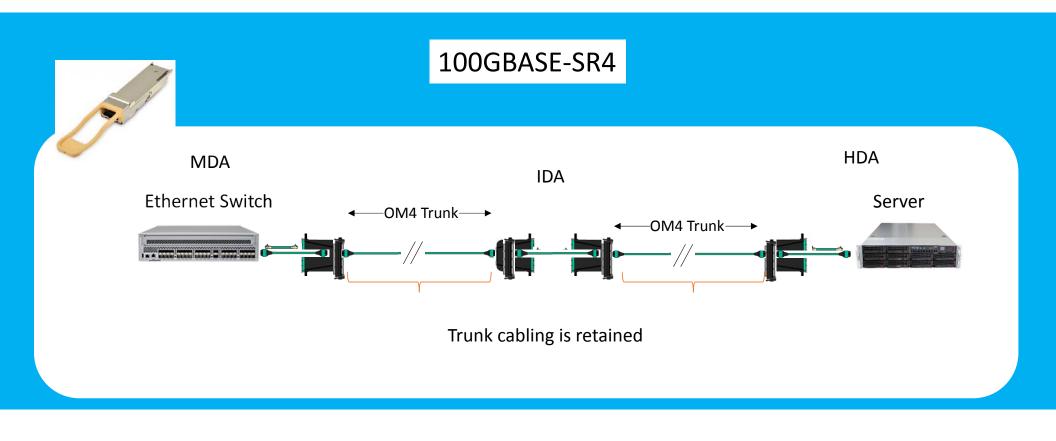

Cabling Infrastructure Migration from 10G to 40G

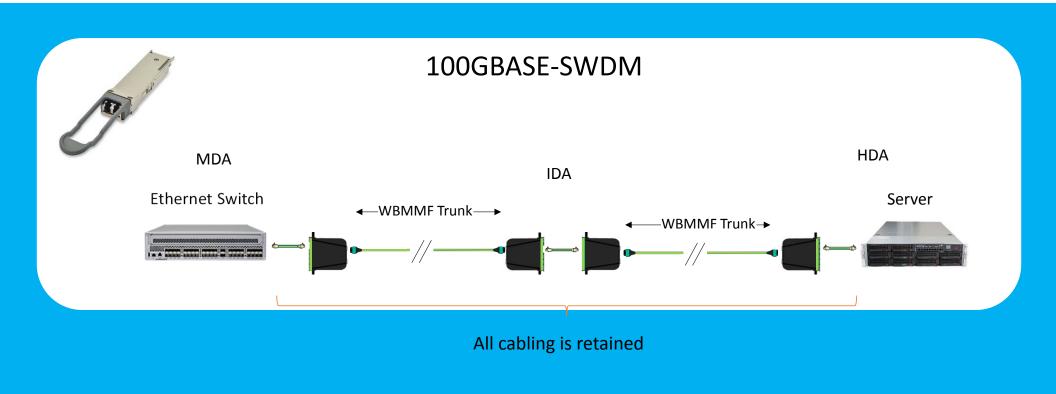

Cabling Infrastructure Migration from 10G to 40G


Migration to 100G connection while retaining existing MPO trunk cabling and adapter panels


Cabling Infrastructure Breakout of 10G from 40G


Cabling Infrastructure Breakout of 10G from 100G/120G


Cabling Infrastructure Breakout of 40G from 100G/120G


120G MPO breakout to (3) 40G MPO with 100% fiber utilization in trunk cables

Migration from 10G to 100G with –SR4 and OM4

Migration from 10G to 100G with –SR4 and OM5

SUMMARY

Two options for cabling infrastructure architecture:

- 1. Serial Duplex
- 2. Parallel

Three options for MPO interface

- 1. 8 fiber
- 2. 12 fiber
- 3. 24 fiber

Many options for Migration Path

- 1. OM3/OM4
- 2. OM5
- 3. SM

THE FABULOUS, FAST MOVING, FEVER PITCH, FOREVER ACCELERATING FIBER FRENZY

Rodney Casteel (<u>rcasteel@commscope.com</u>) Cindy Montstream (<u>cindy.montstream@legrand.us</u>) Paul Neveux (<u>Paul.Neveux@spsx.com</u>) Tony Irujo (<u>tirujo@ofsoptics.com</u>) Darryl Heckle (<u>heckledc@corning.com</u>) Robert Reid (<u>Robert.Reid@panduit.com</u>)

COMMSCSPE°

2018 BICSI WINTER CONFERENCE & EXHIBITION Orlando, FL | February 4-8