Are You Leaving Money on the Table? Making Strategic OSP Cable Choices

Derek Whitehurst
Director of Applications Marketing, LAN and OSPC
Corning Incorporated

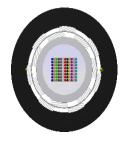
Five Flavors of Black Cable

LOOSE TUBE

MICRO CABLES

RIBBON

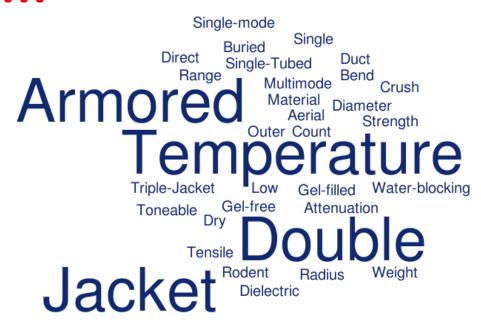
DROP


INDOOR/ OUTDOOR

Focus on Three Cable Families That Overlap

LOOSE TUBE

MICRO CABLES

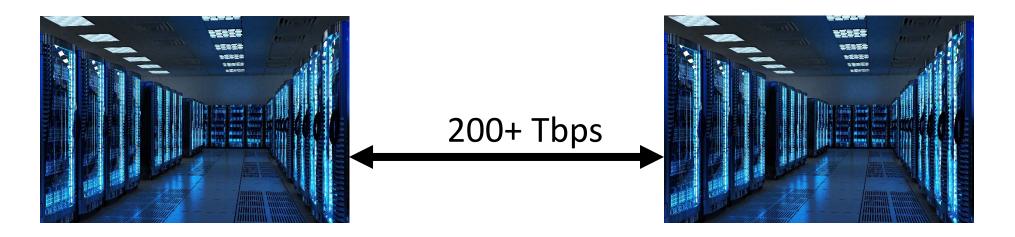

RIBBON

NOT...

General Overprovisioning Guidance

25% Rule

If future network applications are <u>defined</u> and potential demand for unanticipated service is <u>low</u>


50% Rule

If future network applications are <u>defined</u> and potential demand for unanticipated service is high

100% Rule

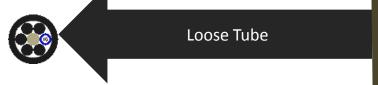
If future network applications are uncertain and potential demand for unanticipated service is very high or subsequent installations are extremely difficult

Average Fiber Counts Are Growing Very Fast

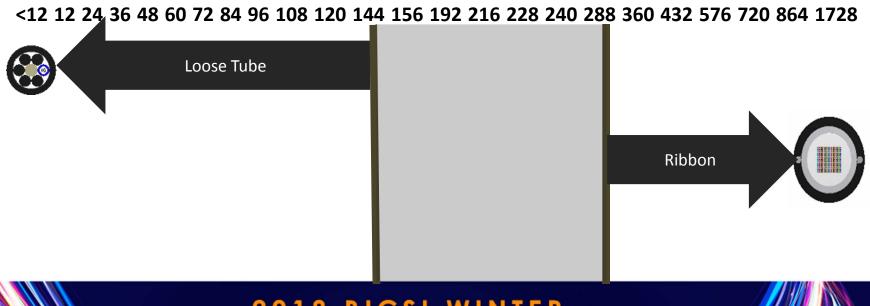
Day 1: You need over 3000 fibers to connect two hyperscale data centers together

Quick Math Shows Staggering Splicing Labor

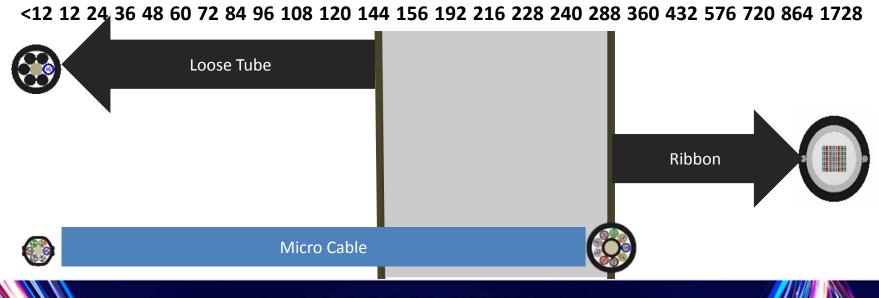
	Ribbon	Single Fiber
Fiber Count	1728F	1728F
Number of splices	144	1728
Time per splice	8 minutes (\$40 per splice)	4 minutes (\$25 per splice)
Total Splicing Time(hrs.)	19 hours	115 hours


Fiber Counts

<12 12 24 36 48 60 72 84 96 108 120 144 156 192 216 228 240 288 360 432 576 720 864 1728



Fiber Counts


<12 12 24 36 48 60 72 84 96 108 120 144 156 192 216 228 240 288 360 432 576 720 864 1728

Fiber Counts

Fiber Counts

Fiber Counts

Micro Cables Offer Scalability and Pay as You Go Model

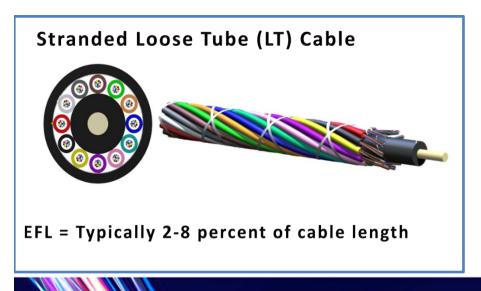
Day One: 2 x 288 = 576F

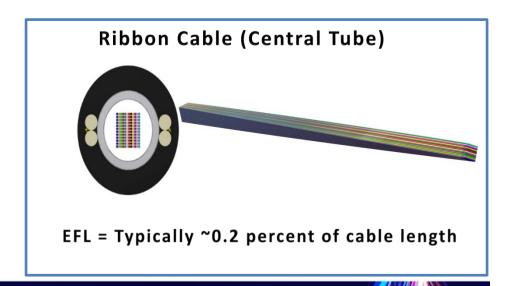
Micro Cables Offer Scalability and Pay as You Go Model

Day One: 2 x 288 = 576F

Future: $7 \times 288 = 2016F$

When Latency Really Matters


In the world of high-frequency trading, a 1 ms advantage can be worth \$100M/year to a financial *Source: Infinera, 2010



- NYSE measures latency in microseconds (µs), not ms
- With 22.4B messages and 15B trades daily, even a 100 µs latency advantage can help

Excess Fiber Length (EFL)

- In any cable design, the length of the fiber must be longer than the cable itself to protect the fiber against stress under cable tension.
- This is known as Excess Fiber Length (EFL)

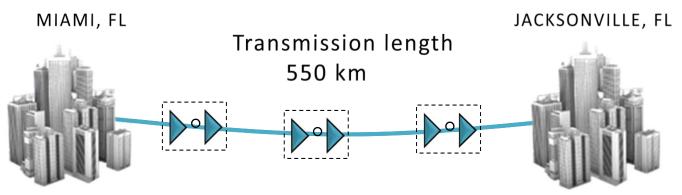
Time of Flight Comparison

MIAMI, FL JACKSONVILLE, FL

Transmission length 550 km

Loose Tube Cable, 144 F

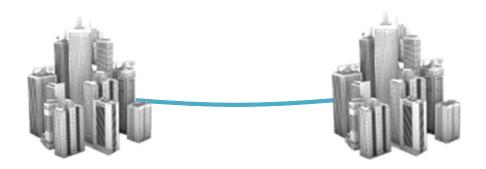
Excess fiber length 5% (typical range 2-8%)
Time of flight 2826 μs



Ribbon Cable, 144 F

Excess fiber length 0.2%Time of flight $2697 \mu s$ **Latency advantage** $129 \mu s$

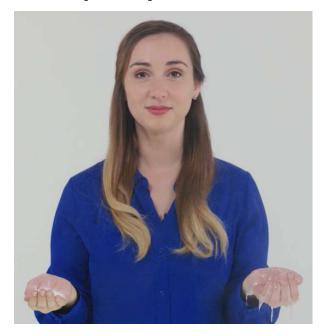
When Loss Really Matters


- 1. Signal generation= # of lit fibers x # of wavelengths per fiber x transceiver cost
- 2. Regeneration= # of lit fibers x # of wavelengths per fiber x transponder cost
- 3. Amplification= number of lit fibers x amplifier cost

Generally, Loose Tube Cables Will Have Lower Attenuation Values Than Equivalent Ribbon Cables

Wavelengths	Loose Tube	Micro Cable	Ribbon
1310nm	0.34	0.34	0.40
1550nm	0.22	0.22	0.30

Low Loss Fiber Can Help Lower System Costs



If system link is > 100km, it is worth the discussion

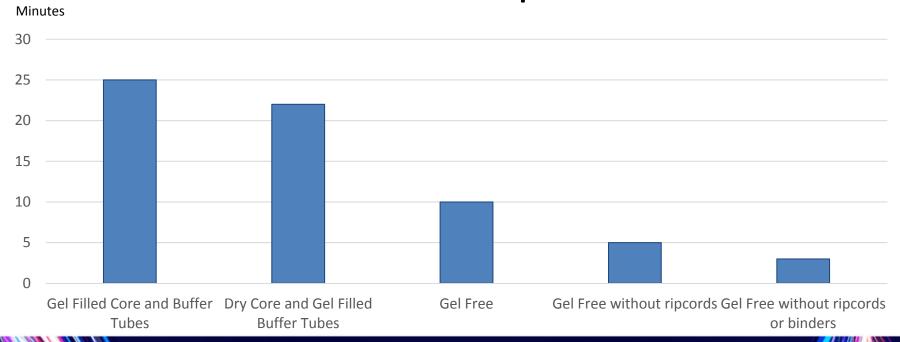
Cable Choices Can Impact Deployment Velocity

- Cable Construction
- Brownfield Capacity Adds
- Greenfield Capacity

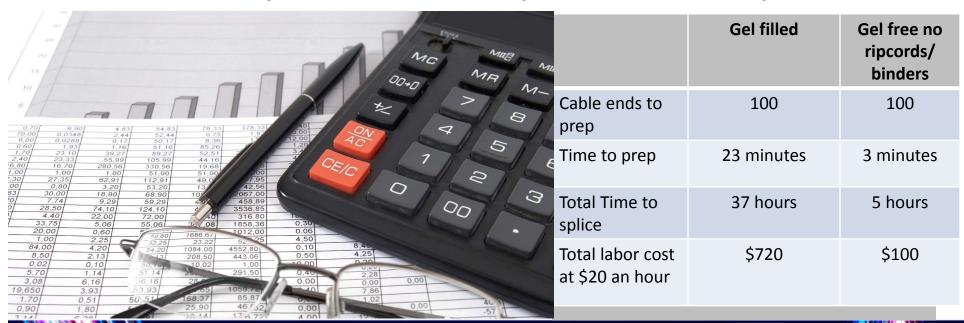
5. Gel filled cables provide more water block protection than dry

- 4. Gel filled cables work best in harsh environments
- 5. Gel filled cables provide more water block protection than dry

- 3. Gel works great for styling your hair
- 4. Gel filled cables work best in harsh environments
- 5. Gel filled cables provide more water block protection than dry



- 2. Gel is necessary to prevent the fiber from delaminating over time
- 3. Gel works great for styling your hair
- 4. Gel filled cables work best in harsh environments
- 5. Gel filled cables provide more water block protection than dry



- 1. Gel on fibers makes them splice better
- 2. Gel is necessary to prevent the fiber from delaminating over time
- 3. Gel works great for styling your hair
- 4. Gel filled cables work best in harsh environments
- 5. Gel filled cables provide more water block protection than dry

Reduction of Prep Time

Simple Cable Prep Can Add Up

Cost-Effective Capacity Upgrades in a Brownfield

\$1.34M

Standard Loose Tube Cable

Day 1 capacity = 2 x 144 F = 288 F

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Same Upgrade Approach Cost a Fortune

Standard Loose Tube Cable

Day 1 capacity = $2 \times 144 F = 288 F$

Day one cost of 10 km installation: \$1.34M

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Standard Loose Tube Cable Upgrade

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Capacity (fiber count) increase requires retrenching and installation of additional 10 km duct and new cable

> Upgrade Cost = \$1.27M Upgrade Time = 7-10 months

Assumptions

10 km METRO route

Civil Works \$120k/km

Cable Blowing

\$3k/km

Duct and 144 F Loose Tube Cable

\$4k/km

Microduct Bundle and 2 x 144 F Micro Cables

\$9.3k/km

Override With Microduct Can Reduce Future Upgrade Cost

Standard Loose Tube Cable

Day 1 capacity = 2 x 144 F = 288 F

Day one cost of 10 km installation: \$1.34M

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Microduct override

A microduct override can be a simple, faster and more cost-effective alternative to digging...

Better Greenfield Approach

Standard Loose Tube Cable

Day 1 capacity = $2 \times 144 F = 288 F$

Day one cost of 10 km installation: \$1.34M

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Microducts and Micro Cables

Day 1 capacity = 2 x 144 F = 288 F

Microducts: 7 x 12.7/10 mm Bundle OD: 1.64 in Micro cable OD: 8.1 mm

Future Upgrade Costs Are Dramatically Reduced

Standard Loose Tube Cable

Day 1 capacity = $2 \times 144 F = 288 F$

Day one cost of 10 km installation: \$1.34M

Duct OD/ID: 1.25 in Cable OD: 15.8 mm

Microducts and Micro Cables

Day 1 capacity = $2 \times 144 F = 288 F$

Microducts: 7 x 12.7/10 mm Bundle OD: 1.64 in Micro cable OD: 8.1 mm

Capacity (fiber count) increase requires blowing of additional micro cable into vacant microduct only

Upgrade Cost = \$0.06M Upgrade Time = 1-2 days

Assumptions

10 km METRO route

Cable Blowing

\$3k/km

Duct and 144 F Loose Tube Cable

\$4k/km

Microduct Bundle and 2 x 144 F Micro Cables

\$9.3k/km

