Designing Border and Perimeter ESS Systems

Thomas Bennett RCDD, DCDC, ESS, OSP, WD, TE, CT BICSI

2017 BICSI Winter Conference & Exhibition

January 22-26 • Tampa, FL

Welcome and Introduction

Discussion Topics for Today's Presentation:

Perimeter Security as a Priority Layer Classifying the Boundary Threat The Five Ds of Security Layering Methodologies Topographical Limitations Physical Barriers Critical System Protection SMAAS and Wireless Infrastructure Components for Perimeter Design Security Policies for a Rapid Response BICSI Challenge

Perimeter is a Vital Layer

- First Contact with an Intruder Assessing the Threat The Response Deterrent
- Knowledge of the Site Perimeter Layer May Be Large Inherent Vulnerabilities

Principles of Security

- 1. Deter
- 2. Delay
- 3. Detect
- 4. Decide

5. Defend

Factors for Deterrence

- Deterrence is <u>Always</u> Preferable
- How Do We Establish Deterrence?
- Methods Include:
 - Barriers
 - Signage
 - Motion Detection Audio

Achieving the Delay

- Delay is Critical in Intercepting the Threat
- Delay Tactics:
 - Fences
 - Barriers
 - Multiple Layers

Accurate Detection

- Dependent Upon Countermeasures
 - Intrusion Detection Sensors
 - Video Analytic Based Surveillance
 - Fence Detection
 - Radar/Wireless Detection

Without Detection Response Will Not Occur

Decision Time

 Once Threat is Established and Detected, We Must Determine the Response Needed

Policy Development and Training are Essential

- Threat Matrix will Determine Response
- Utilizes a Pre-Planned Course of Action
- Which Countermeasures ,Human or Electronic?

Defend the Perimeter

- Enforce Predetermined Response Policies
- Response is Calculated for <u>Each</u> Threat Type
- Response Drills
- All Perimeter Systems <u>Will</u> be Tested

Security is Designed in Layers

- Site Boundary Layer
 - Open Visible Ground is a Best Practice
 - CPTED
- Building Perimeter
 - Doors, Air Vents
 - Loading Docks are a Vulnerability
- Secure all Critical Spaces

What Risk Elements Exist?

- Man Made Risks
 - Planned group of Attackers
 - Individual Intruder
- Natural Risk
 - Flood, Seismic Event
 - Storm or Weather Incursion

Risk = Threat x Vulnerability x Impact

Control Measures

Perimeter Management – Types of Facilities that Pose Exceptional Design Challenges

Airport Facilities

- Perimeters are Highly Complex
- Threats are Difficult to Identify Due to Density

Shipping Ports

- Risks and Threats are Easily Concealed
- Radiological and Other Sensors Needed

Critical Infrastructure

Homeland Security Designates Critical Infrastructure for Federal Funding To Improve Perimeter Security Systems

Special Purpose Commercial Facilities

- Chemical Plants
- Grain Storage
- Oil Refineries
- Tank Farms

Countermeasures: Human vs. Technology

A Combination of Both are Typically Required

Response Policies for Perimeter Breach

- Primary Response
 - Probes and Reconnaissance
 - Threat Identification
- Force Assignment
 - Quantity, Skills Required
 - Predetermined Mobilization
- Response Plan Execution
 - Assets in the Air
 - Assets on the Ground

Which Assets are Deemed Critical ?

- Critical Infrastructure
 - Power Grid
 - Communications Backbone
- Communications, ITE Hardware
 - Transmitters
 - Satellite, Wireless Links
- Site Personnel
 - Monitoring and Operational Response

Fence Barriers

Israel, Russia, Saudi Arabia, Turkey, Mexico, India, China, Pakistan, and the EU all have currently active Border Fence Building Programs. Statistics prove the effectiveness of the fence barrier.

Layout Methodologies

Additional Case Studies

Bics

Variations on Design

Fence Design is Important, However it But May Not Stop a Determined Intruder

The Goal is to Delay, in order that the Intruder Be Detected...

Fence Detection Systems Allow for Intrusion Detection

Fence and Gate Vulnerabilities

Best Practices for Fence Construction

- Foundation and Footer
 - Discourages Tunneling
 - Sufficient Depth
- Minimum Height 12-15'
- Security Cap on Top
 - Concertina Wire
 - Barbed Wire (More than one level)
- Fiber or Copper Fence Detection System Present

Portals and Barrier Types for Access

Automation is a Trend in Portals

Chemical, Narcotics, Biohazard and Radiological Sensors will be part of the Active Scan Process

Specialized Systems for Critical Facility Access

Traditional Entry System as Compared to Special Purpose Vehicle Detainment Barrier Systems

Designing a Transport System

- Communications Duct Bank Footer
 - Underground Concrete Encasement
 - Integrated Tamper/Seismic Sensor
 - Secure Access Ports
- SMAAS Single Mode as a Strategy
- Wireless Backbone
 - Bandwidth/Distance Limitations
 - Mobility Networks
 - Aerial Support Infrastructure

Cloud or Enterprise Infrastructure

Source: US-VISIT procurement notice, DHS

Bandwidth and Performance Requirements

- Bandwidth Calculation
 - Based upon <u>Sum of all Systems</u>
 - Based on Geographical Aggregation
 - Design based upon Segmentation Methods
 For Each Defined Region
- Network Latency for Video Performance
- Central or Remote Stream Monitoring
- Mobility Network Mesh vs. Wired

Available Technology

- Classified versus Commercial Grade Components
- Use of Ruggedized Technology
- Proven Use in the Environment

• Mission Critical Level of IP Network Availability

Wireless Support Infrastructure

- Monopole or Tower Requirements
- Other Subsystems

The RF Frequency Spectrum

The Three "M"s of Wireless Technology

- Mesh
- Microwave
- MM Wave

Wireless Intrusion Monitoring

- In Band Interference
- Out of Band Interference
- Broadcast Signals
- Unauthorized Devices
- Covert Interception

The Need for ODAS

Outside DAS will be utilized for communications between RF mobile devices along a remote perimeter where normal carrier signals are not present.

BICSI Winter Conference & Exhibition

January 22-26 • Tampa, FL

2017

Wireless Network Vulnerability

- Intruder Location Utilizing RF Receiver Triangulation
- Jamming RF Transmission Location Methods

Wireless Spectrum Monitoring

Electronic Countermeasures

- The Intrusion Detection Layer
- The Access Control Layer
- Video Surveillance
- Analytics Processing
- IP Based Systems

Intrusion Detection Systems

- Seismic Detection
- Motion Detection
 - Infrared
 - Video Analytics (Motion or Thermal)
- Radar and Wireless Systems, GPR Based

Perimeter Wireless Detection System

Sensor Technology

Seismic Sensors May be Wired or Wireless

Fence Sensors are Single Mode Fiber or Copper Based

The Access Control Layer

- Portals and Entrance Points
- Intelligent Transportation System Elements
 - LPR
 - Biohazard Detection Systems
 - Radiological Sensors
- Vehicle RFID Systems

Limiting Flow with Entry Portal Systems

- Object Processing Speed is Improved Through Automation
- Various Sensors Types Utilized in this Process
- Video Analytics Including LPR Databases

Biometrics and Facial Recognition Systems

Surveillance Platforms

What Is The Application?

- Long Distance Platforms How Much Height AGL is Needed?
- PTZ versus Fixed Field of View
 - Dependent on Distance, Environment, Topography
- 180 and 360 Degree Applications
- Specialized High Resolution Systems
- Aerial Surveillance Platforms
- Infrared and Thermal Imaging Systems

Selection of the Camera for the Application

The Video Analytics Tool Set

- Rules Based Detection
- Augments Site Personnel
- Remote Notification
- Requires Significant Expertise to Deploy
- 100% Reliability Not Assured
 - Performance Subject to External Factors
 - Weather Impact
 - Terrain Issues

Types of Analytic Models

- Vehicle Detection
- Individual Detection
- False Alarm/Animal Discrimination

Surveillance Quality Challenges

Visibility Challenges Due to Terrain, Fog, Weather, and Lighting

Monitoring, Command and Control Systems

- PSIM
- VMS Platforms
- Monitoring Centers

Systems Designed for Mobility

Autonomous Vehicles

ISRAEL G-NUS PLATFORM

Autonomous Monitoring and Mobility Platforms are In Use Today with Proven Success

Geospatial Systems

- Satellite Based
- High Priority for National Security
- Cost is Extreme for 24/7 usage
- Earliest Warning System Available

Force Responsiveness

A Swift and Powerful Response to Intrusion is Necessary

Aerial Platforms

• LOITER TIME

PLATFORMS

Aerostats

RADAR

PLATFORMS

SURVEILLANCE PLATFORMS

Combat Drones

Industrial Drones

TETHERED

WIRELESS

Power Systems Design

- Electrical System Source
- Power Distribution System
- Power System Redundancy
- Remote Device Power
 - Fence and Gate Systems
 - Intrusion, ACS, and Surveillance
 - Communication Infrastructure

Alternate Power Sources

- Utility Entrances (Fiber and Power)
- Transformer Components
- Generator Components
- Solar and Fuel Cell
- Monitoring and Management
 - Mobile versus Fixed Control Assets

Alternate Power Sources

FUEL CELL

GAS TURBINE

SOLAR

Redundant Systems

- Utility Entrances (Fiber and Power)
- Transformer Components
- Generator Components
- Solar and Fuel Cell
- Monitoring and Management
 - Mobile versus Fixed Control Assets

Physical Protection of Key Components

- Transformers and Switchgear
 - Solar Panels
 - Fuel Cells
- Fuel Storage
- Natural Gas Supply Lines
- Generator Farms
- Duct Banks

Perimeter Security Systems

- More Advanced Integrations
- Use of 180 and 360 Degree Megapixel Imaging
- Advanced Biometrics
- Local and Remote Site Monitoring
- Sensor Accuracy

Budgetary Cost Analysis

- Cost per Mile Analysis
- Operational Costs
- TCO for ten year analysis
 - Fixed Capital versus Ongoing Costs

Designer's Challenge

Sample Border Perimeter Design

- National 1 Mile Section Border System Design
 - Security Layers
 - Perimeter Sensors
 - Communications Transport
 - Barriers
 - Seismic, Radiological, Biohazard Sensors
 - Surveillance and Access Control

Thank you for attending the presentation!

Enjoy the Conference and Maintain Your Perimeter at all Costs!

tbennett@bicsi.org

