

What You Need to Know About Power over Ethernet (PoE)

Standards and Installation Best Practices

Kirk Krahn Senior Product Manager Leviton Network Solutions

About Today's Presenter

Kirk Krahn, Senior Product Manager – Leviton Network Solutions.

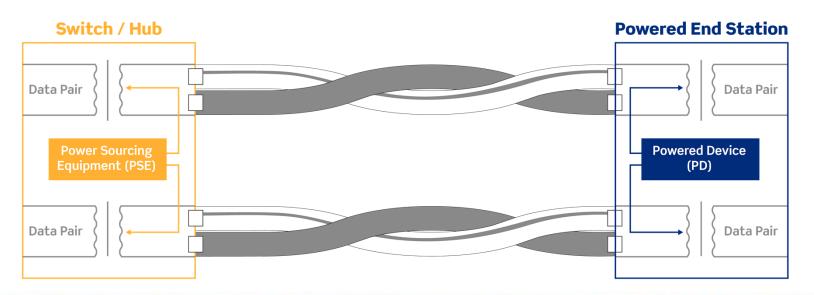
- 12 years of experience in telecommunications industry
- Held a variety of roles in manufacturing and consulting firms
- Role at Leviton is to manage copper cable and cable assemblies product line
- Graduate of Bradley University and MBA from DePaul University
- Lives in Geneva, IL with wife and son

What You Need to Know About PoE

Agenda

- PoE Overview
 - Market Drivers | The Evolution of PoE | Applications
- Understanding PoE
 - Managing Temperature Rise | Applicable Codes and Standards | LP Cabling and NEC
- Canadian differences in approach
 - The CEC perspective
- Recommendations for PoE
 - Design Advice | What to Consider

PoE Overview


Market Drivers | The Evolution of PoE | Applications

First – The Basics

What is PoE?

Delivery of power and data over the same twisted pair cable

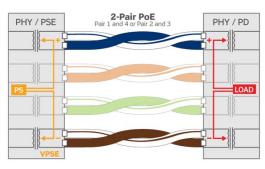
2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

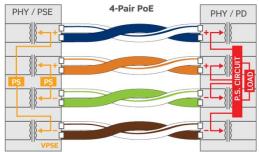
Bi

Equipment

The Power in PoE

• Two primary components:


- Power Sourcing Equipment (PSE)
- Powered Device (PD)



Power and Data

Over the Same Pair Simultaneously

- Power delivered via center tap of data transformer combining power and data
- Both conductors of one pair are (+) while both conductors of the other pair are (-)
 - 2 pair PoE: pairs 1 & 4 or 2 & 3 used
 - 4 pair PoE: pairs 1 & 4, AND 2 & 3 used
- Data "rides on top" of DC voltage DC voltage does not interfere with data

Market Drivers

Demand for PoE

- Internet of Everything (IoE)
- RJ45 compatibility
- Ease of deployment
- Economical, centralized power backup
- Device mobility

Power Over Ethernet

The Evolution – How We Got Here

• 802.3af completed in 2003

- 15.4W power sent = 12.95W of delivered power (Type 1)

• 802.3at PoE+ completed in 2009

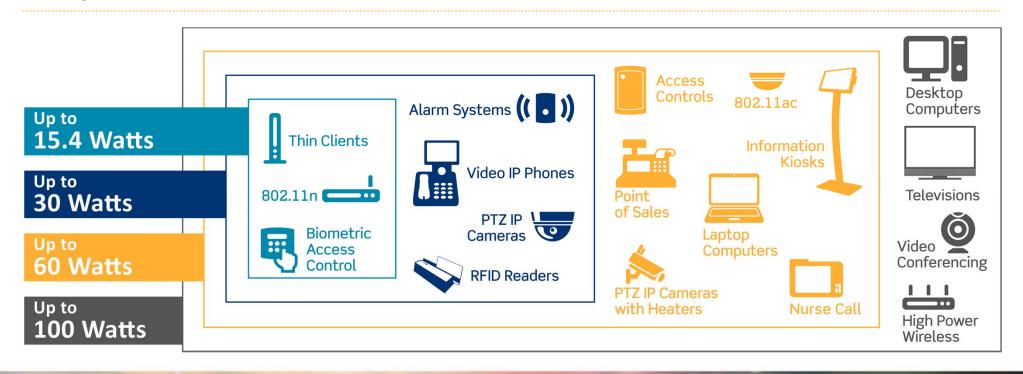
- 30W power sent = 25.5W of delivered power (Type 2)

• 802.3bt PoE expected to be published in 2018

-60W and 100W power sent

Power Over Ethernet

Higher Power and Bandwidth Driving Cat 6A Solutions


- Next-gen devices require greater than Gigabit Ethernet
 - Wireless access points
 - HDTV, Kiosks and IP cameras
- Build networks with future needs in mind

Applications

Why We Need More Power

2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

Bic

Benefits

PoE vs. Traditional Power

Reduced costs

- One system to be installed
- Easier to maintain and administer
- Faster deployment of powered devices

Centralized control

- Emergency back-up power
- Disaster recovery
- Improved business security

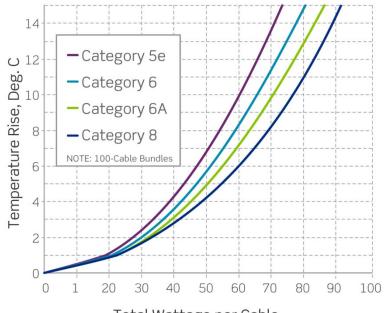
Benefits Continued

PoE vs. Traditional Power

Safety

- Power applied and capacity reserved after handshake
- Safer power levels than A/C circuit
- Energy Efficiency and Savings
 - Building Automation Sensors and Control
- Flexibility
 - Standardized power levels and Ethernet ubiquity

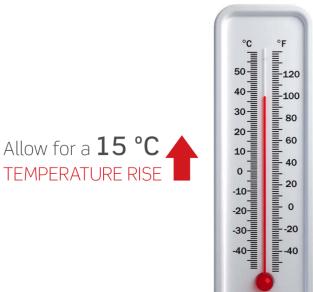
Understanding PoE


Managing Temperature Rise | Applicable Codes and Standards | LP Cabling and NEC

Excessive Temperature Rise

PoE Challenges

- The higher the category cable, the lower the temperature rise (in general)
- At levels above 60W, the heat rise for 100-cable bundles running PoE can cause:
 - Increased insertion loss
 - Reduced performance



Next Generation PoE Challenges

Managing Heat Rise – TIA

TIA examined installed cabling issues

- TSB 184-A (now published)
- Bundle sizes to limit temperature rise to 15 °C with a 60 °C cable
- Assumes 45 °C ambient and power on all 4 pairs

Next Generation PoE Challenges

Managing Heat Rise – NFPA

- National Fire Protection Agency (NFPA 70/NEC)
 - Heat-related concerns
 - New requirements for communications cable carrying power
 - Bundle sizes limited by maximum cable temperature rating and ampacity
 - Assumes 30 °C ambient temperature

Next Generation PoE Challenges

Managing Heat Rise – Canadian perspective

• CSA Z462, Safe work practices

- Not a direct equivalent of NFPA 70
- Concentrates on arc flash related concerns

• CE Code, Electrical installation code

- One year behind NEC in edition
- 2018 Edition will not contain product requirements: this is the scope of product standards
- Very similar to NEC but contains some more stringent requirements
- Sometimes NEC requirements cannot be bridged to CEC

NEC 2017 Code Changes

60W and Below

- Adopted changes have little effect on PoE installations at 60W and below, per article 840:
 - NEC 2017 places no new restrictions on bundle size

NEC 2017 Code Changes

Article 840 Above 60W

In June 2016, NFPA finalized Articles 725 and 840 (published in August 2016)

- New Ampacity table 725.144
 - Maximum bundle sizes
 - This table referenced in Article 840 (when above 60W)
 - Only when ambient temperature at/below 30 °C

• Ambient temperatures above 30 °C

- Refer to table 310.15(B)(2)(a)
- De-rating may impact bundle size and cable selection

NEC 2017 Code Requirements

Article 725 Table 725.144

Table 725.114, Ampacities of Each Conductor (in Amperes) in a 4-Pair Class 2 or Class 3 Data Cables, Base on Copper Conductors at Ambient Temperature of 30°C (86°F) with all Conductors in All cables Carrying Current, 60° (140°F), 75°C (167°F) and 90°C (194°F) Rated Cables

AWG		Number of 4-Pair Cables in a Bundle																			
	1			2-7			8-19			20-37			38-61			62-91				92-192	
	Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating			Temperature Rating		
	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C
26	1.0	1.0	1.0	1.0	1.0	1.0	0.7	0.8	1.0	0.5	0.6	0.7	0.4	0.5	0.6	0.4	0.5	0.6	NA	NA	NA
24	2.0	2.0	2.0	1.0	1.4	1.6	0.8	1.0	1.1	0.6	0.7	0.9	0.5	0.6	0.7	0.4	0.5	0.6	0.3	0.4	0.5
23	2.5	2.5	2.5	1.2	1.5	1.7	0.8	1.1	1.2	0.6	0.8	0.9	0.5	0.7	0.8	0.5	0.7	0.8	0.4	0.5	0.6
22	3.0	3.0	3.0	1.4	1.8	2.1	1.0	1.2	1.4	0.7	0.9	1.1	0.6	0.8	0.9	0.6	0.7	0.8	0.5	0.6	0.7
Note 1: For bundle sizes over 192 cables, or for conductor sizes smaller than 26 AWG, ampacities shall be permitted to be determined by qualified personnel under engineering supervision.																					
Note 2: Where only half of the conductors in each cable are carrying current, the values in the table shall be permitted to be increased by a factor of 1.4																					
Informational Note: The conductor sizes in data cable sin wide-spread use are typically 22-26 AWG.																					

"existing low power implementations of powering (<60 watts), such as PoE and PoE+, there is little chance of overheating the cables regardless of cable type, bundle size or installation method" UL Document

CEC 2015 Requirements for PoE

• Next edition of CEC is 2018

- Proposal similar to NEC not yet submitted to CEC for 2018 edition
 - CEC will not reflect NEC until 2021!

• Ampacity configurations different than NEC

- CEC has only partial configuration overlap with NEC
- In the end , similar results but different installation

Ambient temperatures above 30 °C

60W

NEC 2017 LP Cabling

New UL optional Limited Power (LP) cable rating

- Alternative to table in 725.144, bundle size agnostic
- Same 30 °C ambient temperature limitations apply
- Above 30 °C, refer to 310.15 for cable derating

Conductor Ampacity Correction Factors for Ambient Temperatures									
Ambient Temp. °C	For ambier conductor al belov	Ambient Temp. °F							
p. 0	60 °C	75 °C	90 °C						
21-25	1.08	1.05	1.04	70-77					
26-30	1.00	1.00	1.00	78-86					
31-35	0.91	0.94	0.96	87-95					
36-40	0.82	0.88	0.91	96-104					
41-45	0.71	0.82	0.87	105-113					
46-50	0.58	0.75	0.82	114-122					
51-55	0.41	0.67	0.76	123-131					
56-60	—	0.58	0.71	132-140					
61-70	_	0.33	0.58	141-158					
71-80	_	_	0.41	159-176					

2017 BICSI CANADIAN CONFERENCE & EXHIBITION MAY 8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA

2017 Edition

New UL Rating Program

What are LP-rated cables?

 Cables are tested to assure temperature rating is not exceeded when used at the LP-rated current – 30 °C is ambient regardless of the number of cables in the bundle

• Cable legend to include: "...CMP-LP(0.xA)"

New UL Rating Program

LP Cables Continued

x = Ampacity of the cable (A = Amps)

- 0.5A = 100W using 50 Volts over 4 pairs
- 0.6A = 120W using 50 Volts over 4 pairs
- 0.7A = 140W using 50 Volts over 4 pairs
- LP cables are not mandated by the 2017
 NEC but included as an option

 Refer to UL.com guide information for LP-rated cable

 Do not forget Little "c" in front of UL mark for Canadian certification!

2017 NEC

What happens next, what do you need to know?

- Adopted changes have little effect on PoE applications at 60W or lower, per Article 840
- Impact to PoE greater than 60W are more significant
 - New NEC was published in August 2016
 - Every state has different process/timeline for adopting codes
 - Check with local authority on PoE installation codes/requirements
 - Using LP cabling is optional, check with cable manufacturer for specific information on product capability

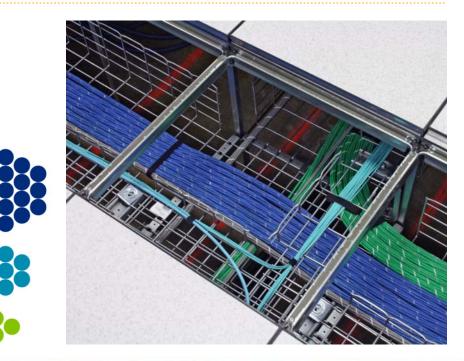
2018 CEC

What happens next, what do you need to know?

• We have to wait for 2021 edition for full consideration of PoE by the CEC

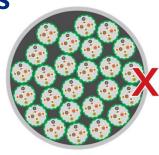
- New CEC gets published at the January 2nd mark of edition year
- Every province/territory has similar timeline for adopting CEC, usually within 6 months of new edition, with 100% adoption
- Local authority on PoE installation requirements not covered yet by CEC may require special inspection

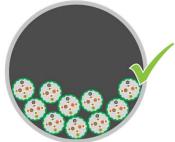
8-11 • VANCOUVER, BRITISH COLUMBIA, CANADA


Recommendations for PoE Using Non-LP Cable

Design Advice | What to Consider

Design Considerations


- Reduce number of cables per bundle
- Use wire cable trays or similar cable management
 - Allows for largely unrestricted airflow around the cables or cable bundles
- Keep cables loosely bundled



No Cramming

PoE Installation Best Practices

- Avoid cramming or "necking down" cables into small areas
- Provide as large an area possible for this transition
 - Keep transitional length as short as possible use multiple conduits or larger conduit as needed
- If available area is limited, loosely arrange cables on either side to help dissipate heat

Use Cables With Higher Temperature Ratings

PoE Installation Best Practices

- Consider using cables with higher temperature ratings
 - Assures that cables stay below their maximum rated temperature
- 60 °C has been a very common rating for premise cables
- Today 70 °C and 75 °C and even 90 °C cables readily available

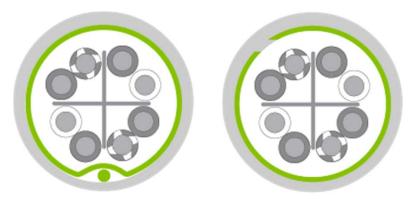
Why Category 6A?

Operational Advantages

23 AWG conductors generate less heat than 24 AWG

- 23 AWG is larger in diameter than 24 AWG
- Limits cable derating running cooler without compromising insertion loss, enabling longer runs
- Cooler temp maintains cable integrity and lifespan
- Reduced OPEX, less facility cooling required
- Improved environmental impact

- Lower costs by supporting higher power per cable, avoiding additional bundles and trays
- Cat 6A delivers best performance, supports future applications

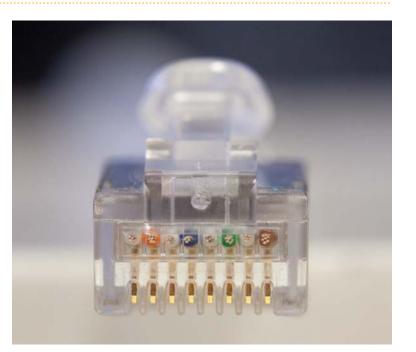


Consider Shielded Cabling

PoE Installation Best Practices

- Consider using a shielded cabling system, or unshielded cables with patented metallic isolation wrap
 - Radiates heat better than traditional unshielded cables
 - Reduces the cables' temperature rise

Use Metal Bodied Connectors


PoE Installation Best Practices

 Shielded and solid metal bodied UTP Cat 6A connectors dissipate heat better than plastic alternatives

TIA-568-C.2 Compliant Patch Cords

- ANSI/TIA-1096-A requires 50 micro-inches of gold
- Arcing from disconnect under load causes pitting and wears away gold over time
- Gold plating is a big part of cord cost
- Non-compliant cords will have lower reliability when used in PoE applications

Use Category 6A Systems for New Installations

Solutions that meet and exceed current standards

- 802.3at (Type 1) = 15.5 Watts
- 802.3at (Type 2) = 30 Watts
- 802.3bt (Type 3) / UPOE = 60 Watts

- Capable of meeting emerging standards, up to 100 watts
 - 802.3bt (Type 4) / PoH = 100 Watts
- Component-rated end-to-end system with enhanced margins for better performance and easier installation

Conclusions

- When designing structured cabling solutions consider both current and future possible PoE applications
- New applications are being developed daily
 - PoE enabled LED Lighting
 - Cisco Digital Ceiling

Conclusions

Continued

High-quality connectivity and cabling is essential

 Use standards-based solutions designed to support emerging PoE applications

Be aware of any changes to local codes as they relate to PoE installations

Thank You

